Effective breast cancer combination therapy targeting BACH1 and mitochondrial metabolism

Jiyoung Lee1, Ali E. Yesilkalin1, Joseph P. Wynne1, Casey Frankenberg1, Juan Liu2, Jielin Yan1, Mohamad Elbaz1, Daniel C. Rabe1, Felicia D. Rustandy1, Payal Tiwari1, Elizabeth A. Grossman1,4,5, Peter C. Hart6, Christie Kang1, Sydney M. Sanderson2, Jorge Andrade2, Daniel K. Nomura1,4,5, Marcelo G. Bonini6,8, Jason W. Locasale2 & Marsha Rich Rossner1*

Mitochondrial metabolism is an attractive target for cancer therapy1,2. Reprogramming metabolic pathways could improve the ability of metabolic inhibitors to suppress cancers with limited treatment options, such as triple-negative breast cancer (TNBC)1,3. Here we show that BTB and CNC homology 1 (BACH1)4, a haem-binding transcription factor that is increased in expression in tumours from patients with TNBC, targets mitochondrial metabolism. BACH1 decreases glucose utilization in the tricarboxylic acid cycle and negatively regulates transcription of electron transport chain (ETC) genes. BACH1 depletion by shRNA or degradation by hemin sensitizes cells to ETC inhibitors such as metformin3,6, suppressing growth of both cell line and patient-derived tumour xenographs. Expression of a haem-resistant BACH1 mutant in cells that express a short hairpin RNA for BACH1 rescues the BACH1 phenotype and restores metformin resistance in hemin-treated cells and tumours. Finally, BACH1 gene expression inversely correlates with ETC gene expression in tumours from patients with breast cancer and in other tumour types, which highlights the clinical relevance of our findings. This study demonstrates that mitochondrial metabolism can be exploited by targeting BACH1 to sensitize breast cancer and potentially other tumour tissues to mitochondrial inhibitors.

The lack of approved targeted therapies and effective chemotherapy with low toxicity for TNBC remains a major hindrance for treatment and prompted us to identify novel targets5. Using a bioinformatics approach based on patient-derived data, we showed that the transcription factor BACH1 is required for metastasis of aggressive TNBCs, and its gene signature is associated with poor outcomes9–12. Of note, Bach1-null mice are viable and develop normally13, which suggests that BACH1 may be a good target for cancer therapy because it controls cellular stress responses but is not essential—and therefore may be inhibited with few side effects. Analyses of BACH1 transcript and gene copy number in primary tumour datasets (The Cancer Genome Atlas (TCGA)14, Molecular Taxonomy of Breast Cancer International Consortium (METABRIC)15, GSE203416 and GSE1110117) showed a significant gain in triple-negative and basal-like breast cancer relative measured by qRT-PCR. Mean ± s.e.m., n = 3 biological independent replicates, two-tailed t-test. Right, protein blots of BACH1 and ETC genes in BM1-shBACH1 and control cell lysates. Relative band density shown below the blots. c, Representative BACH1 western blots using lysates of MB468, MB436 or BM1 cells. Each experiment repeated independently more than three times with similar results. d, Recruitment of BACH1 and H3K27Me3 to promoter regions of mitochondrial genes in BM1 cells. Relative fold enrichment compared to IgG binding shown as mean ± s.e.m., n = 3 biologically independent replicates, two-tailed t-test.

1Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA. 2Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA. 3Department of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California at Berkeley, Berkeley, CA, USA. 4Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA. 5Department of Nutritional Sciences and Toxicology, University of California at Berkeley, Berkeley, CA, USA. 6Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA. 7Center for Research Informatics, University of Chicago, Chicago, IL, USA. 8Present address: Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA. *e-mail: m-rosner@uchicago.edu
to other subtypes such as luminal A, luminal B, HER2-enriched and normal-like breast cancer (Extended Data Fig. 1a, b).

To examine other potential functions of BACH1 in TNBC, we evaluated microarrays of metastatic MDA-MB-231-derived cells (BM1; also termed 1833 (ref. 18)) expressing short hairpin RNA (shRNA) for BACH1 (BM1-shBACH1) or control vector (BM1-shCont)10. Gene enrichment analysis identified a significant increase in metabolic pathways including energy metabolism and mitochondrial inner membrane genes upon BACH1 depletion (Fig. 1a and Extended Data Fig. 1c). We validated shBACH1 induction of mitochondrial inner membrane genes largely involved in the ETC by quantitative reverse transcription with PCR (qRT–PCR) and immunoblotting using two human TNBC cell lines that express BACH1: BM1 and MDA-MB-436 (MB436) (Fig. 1b and Extended Data Fig. 1d).

To determine whether mitochondrial genes are direct BACH1 targets, we analysed potential BACH1 recruitment sites (MAF recognition elements) within the promoter regions of these genes19. Having identified potential BACH1-binding sites in six mitochondrial genes, ATP5D (also known as ATP5F1D), COX15, UQRCR1, ATP5J (also known as ATP5PF), SLCA2A2 and TIMM88 (Extended Data Fig. 1e), we performed chromatin immunoprecipitation (ChIP) assays with BACH1 antibody20. Haem oxygenase 1 (HMOX1), which is transcriptionally repressed by BACH113, or BACH1-low cells (shBACH1 or MB468) served as positive or negative controls for BACH1-binding specificity (Fig. 1c and Extended Data Fig. 1f). We observed a marked enrichment of BACH1 binding to the promoter regions of ETC genes and binding of the repressive histone marker H3K27Me321 (Fig. 1c, d and Extended Data Fig. 1g, h). These results suggest that BACH1 is a direct suppressor of mitochondrial ETC gene transcription.

Further bioinformatics analyses using data from patients with breast cancer supported these findings. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of genes that negatively correlate with BACH1 expression in multiple breast cancer datasets showed a marked enrichment in oxidative phosphorylation gene expression as well as genes associated with other diseases (Extended Data Fig. 1i, j). Furthermore, expression of ETC genes in TNBC-specific TCGA datasets was inversely correlated with BACH1 expression (Extended Data Fig. 1k and Supplementary Table 1).

We then determined whether the BACH1-induced changes in ETC genes affect metabolic phenotypes in breast cancer cells by measuring both oxygen consumption rate (OCR), an indication of aerobic respiration, and extracellular acidification rate (ECAR), a readout of lactic acid produced from aerobic glycolysis. TNBC cells depleted of BACH1 displayed increased basal as well as maximum OCR but decreased ECAR relative to the control (Fig. 2a and Extended Data Fig. 2a). These data suggest that loss of BACH1 promotes mitochondrial respiration.

Consistent with these results, mass-spectrometry analysis of metabolites identified increased levels of TCA cycle intermediates and ATP levels upon BACH1 knockdown (Extended Data Fig. 2b). We also observed a decrease in the steady-state levels of multiple intermediates in the glycolysis pathway, including glucose-6-phosphate (G6P), fructose-6-phosphate (F6P), fructose-1,6-bisphosphate (F16BP), dihydroxyacetone phosphate/glyceraldehyde 3-phosphate (DG3P) and lactate in shBACH1 cells.

To determine the effect of BACH1 on glucose utilization, we first treated shBACH1 cells with uniformly labelled [U-13C6]-glucose13, or [U-13C6]-glucose22 (Fig. 2b). We observed a significant increase in the levels of 13C-labelled pyruvate in shBACH1 cells compared to control (Fig. 2c). Similarly, the isotopomer distribution of [U-13C5]-glucose into 13C-labelled citrate, oxaloacetate, α-ketoglutarate, fumarate and malate generally displayed a small but significant increase in shBACH1 cells relative to control cells (Fig. 2d and Extended Data Fig. 2c). A decrease in the labelling of the glycolytic intermediates 13C-G6P and 13C-cysteine-3-phosphate was also observed in shBACH1 cells relative to controls. We performed additional tracing with [U-13C5]-glutamine, an alternative carbon source for mitochondria. In contrast to glucose utilization, we observed a small but significant decrease in isotopomer labelling of [U-13C5]-glutamine in TCA intermediates upon BACH1 depletion (Extended Data Fig. 2d). Collectively, these results suggest that loss of BACH1 induces ETC gene expression, promotes mitochondrial respiration and increases glucose utilization in the TCA cycle.

To better understand the changes in mitochondrial metabolism upon BACH1 depletion, we analysed an entry point into the TCA cycle,
Hemin mimics shBACH1 through BACH1 degradation in TNBC. a, Relative mRNA levels of mitochondrial inner membrane genes in BM1 cells treated with hemin (20 μM) or vehicle and representative protein blots. Three independent experiments repeated with similar results. b, Measurement of OCR and ECAR in BM1 cells pre-treated with hemin (20 μM) or vehicle. Mean ± s.e.m., n = 6 biologically independent samples, two-tailed t-test. c, Cell growth, measured as confluence area covered by BM1 cells treated with vehicle, hemin or metformin. d, Top, cysteine residues mutated to alanine in haem-binding motifs of BACH1. Bottom, western blots of BACH1 in cell lysates of BM1 and BM1-shBACH1 cells transfected with BACH1(mut) (100 ng) and treated with hemin (10, 20, 40 and 80 μM) for 48 h. Each experiment repeated independently three times with similar results. e, Cell growth, measured as confluence area of BM1-shBACH1 cells expressing BACH1(mut), treated with vehicle (veh), hemin (H) or metformin (M). f, Relative mRNA levels of mitochondrial genes in shBACH1 cells stably expressing BACH1(mut) and treated with hemin (20 μM) for 48 h. For qRT–PCR analyses in a, f, mean ± s.e.m., n = 3 biologically independent samples, two-tailed t-test. For cell growth assays in c, e, mean ± s.e.m., n = 6 biologically independent samples, two-tailed t-test. In c, e, arrow indicates when drugs were added.

As an alternative means of depleting BACH1, we induced BACH1 degradation using hemin, the active ingredient of the FDA-approved drug Panhematin, which is used to treat acute porphyria. We treated TNBC cells with a dose that is neither cytotoxic nor inhibits growth, yet is still effective at reducing BACH1 levels (Extended Data Fig. 5a). As observed with shBACH1, hemin increased mitochondrial gene expression and altered cellular metabolic phenotypes, inducing basal and maximum OCR but lowering ECAR (Fig. 3a, b and Extended Data Fig. 5b, c). Similarly, hemin decreased growth and viability of TNBC cells upon treatment with metformin or other ETC inhibitors (Fig. 3c and Extended Data Fig. 5d, e). These results indicate that pharmacological depletion using hemin mimics the phenotype induced by genetic knockdown of BACH1.

To test hemin specificity for BACH1, we generated a haem-resistant mouse BACH1 mutant (BACH1(mut)), which has cysteine to alanine point mutations in four C-terminal haem-binding sites that are required for haem binding, release of BACH1 from DNA for nuclear localization and mitochondrial metabolism. BACH1(mut) expressed cells were resistant to hemin treatment with respect to metabolic properties and metformin sensitivity (Fig. 3e, f and Extended Data Fig. 5f–k). These data suggest that hemin acts through specific degradation of BACH1.

We then tested whether BACH1 is a useful therapeutic target in vivo. First, we treated BACH1-depleted xenograft TNBC tumours with metformin in the range commonly used for mouse studies (200–300 mg per kg (body weight))28,29. These doses result in mouse tumour and plasma metformin concentrations (3–12 μM) similar to those found in metformin-treated patients with diabetes (~10 μM range)28,29. Neither BACH1-depletion nor metformin alone altered tumour size.

Pyruvate dehydrogenase (PDH). PDH converts pyruvate to acetyl-coA and is inhibited by pyruvate dehydrogenase kinase (PDK), which phosphorylates PDH on Ser293. BACH1 knockdown reduces both PDK and PDH Ser293 phosphorylation (pSer293) but not overall PDH levels, thereby up-regulating PDH activity (Fig. 2f and Extended Data Fig. 2e). ChIP assays showed that BACH1 binds to the promoters of PDK genes in BM1 and MB436 but not in BACH1-deficient MB468 cells (Fig. 2g and Extended Data Fig. 2f). By contrast, there was no change in expression of pyruvate carboxylase, which replenishes TCA intermediates by converting pyruvate to oxaloacetate26 (Extended Data Fig. 2g). These results indicate that BACH1 regulates PDK transcription and PDH phosphorylation, key steps controlling glycolysis and mitochondrial metabolism.

Because loss of BACH1 regulates mitochondrial metabolism, we determined whether BACH1-depleted cells exhibit increased sensitivity to agents that target these pathways. Metformin inhibits mitochondrial ETC complex I as well as other metabolic targets2,22,26. Rotenone and antimycin A target ETC complex I and complex III27, respectively. These inhibitors significantly reduced cell growth and viability in BACH1-depleted cells relative to control cells (Fig. 2h and Extended Data Fig. 3a–c). Cellular resistance to metformin at levels used in previous studies28,29 reflected the relative expression of BACH1 in MB468 (low), MB436 (intermediate) and BM1 (high) cells (Fig. 1c and Extended Data Fig. 3d, e). As a widely prescribed anti-diabetic drug that can be cytototoxic or cytoprotective5,39, metformin is less toxic than rotenone or antimycin A; we therefore used metformin for further studies (Extended Data Fig. 3f). These results suggest that BACH1 depletion overcomes TNBC resistance to inhibitors of mitochondrial metabolism by increasing dependency on mitochondrial respiration.

Additionally, we added pyruvate (2.5 mM) to BACH1-depleted cells to assess its effect on metformin resistance. Control cells (high BACH1) were resistant to metformin independent of pyruvate, but shBACH1 cells were only resistant to metformin in the presence of pyruvate. The effect of pyruvate on the NAD+/NADH ratio paralleled metformin resistance (Extended Data Fig. 4a, b), consistent with previous reports22,26.

The mitochondrial ETC genes induced in BACH1-depleted cells also affected metformin sensitivity. Silencing of COX15 or UQRC1 in BACH1-depleted cells completely restored metformin resistance and rescued cell growth (Extended Data Fig. 4c, d). Notably, neither expression of the metformin transporter (OCT1, encoded by SLC22A1)31 nor mitochondrial biogenesis genes such as peroxisome proliferator-activated receptor gamma (PPARG, which encodes PPARγ) or peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A, which encodes PGC1γ)32,33 were altered by BACH1 depletion (Extended Data Fig. 4e). These results demonstrate that increased mitochondrial ETC gene expression enhances sensitivity to ETC inhibitor treatment.

Conflict of interest. We declare no competing interests.

Funding. This work was supported by the Norwegian Cancer Society (to J.H.), the Medical Research Council (to J.H., N.J.P., R.K. and S.B.), the Norwegian Cancer Society (to N.J.P., F.K., A.B. and S.B.) and the Norwegian Cancer Society, the Cancer and Cause Foundation and the University of Oslo’s Research Foundation (to A.B.).

Data availability. The data that support the findings of this study are openly available in the Gene Expression Omnibus (accession number GSE125018).

More information and files. For additional information or resources, please see the Extended Data.
compared to control tumours. Notably, metformin suppressed growth of xenograft tumours (BM1 or MB436) that stably express shBACH1, and most grafted mice were tumour-free (Fig. 4a and Extended Data Fig. 6a–c). This reduction in tumours was not a consequence of overall toxicity, as all mice in this and subsequent treatment groups exhibited no change in body weight (Extended Data Fig. 6d). As in cultured cells, the BACH1-depleted tumour cells had low levels of BACH1, reduced PDH pSer293 and increased ETC protein levels (Extended Data Fig. 6e, f). Depletion of BACH1 in MB436 tumours also suppressed lung metastasis, consistent with our previous observations with BM1 cells10 (Extended Data Fig. 6g, h).

Combination treatment with hemin and metformin also suppressed tumour growth. After tumour formation, we treated BACH1-expressing TNBC cell lines (BM1 and MB436) or patient-derived xenografts (PDX) with hemin for ten days to degrade BACH1 before metformin treatment (Extended Data Fig. 7a–c). Only the combined hemin–metformin treatment significantly suppressed tumour growth (Fig. 4b, c and Extended Data Fig. 7d–f).

Next, to investigate the dependence of combined hemin–metformin treatment on BACH1, we performed BACH1-rescue experiments using BM1 or MB436-shBACH1 cells transfected with mouse BACH1 (mut). In contrast to tumours expressing wild-type BACH1, which exhibited reduced growth with hemin–metformin treatment, BACH1 (mut) xenografts were resistant to the hemin–metformin treatment (Fig. 4d and Extended Data Fig. 7g–i). Similarly, overexpression of wild-type mouse BACH1 in shBACH1 cells also rescued the resistant phenotype and overcame tumour sensitivity to combined hemin–metformin treatment, which was insufficient to degrade the mouse BACH1 at the dose used (Extended Data Fig. 7j). Taken together, these results show that hemin sensitizes TNBC tumours to metformin by degrading BACH1.

Bioinformatics analyses of clinical samples illustrate the relevance of these findings to patients with cancer. Approximately 40% of TCGA breast tumours express BACH1 at normal or intermediate levels, however, 60% of these tumours express either higher or lower than normal levels of BACH1 (Fig. 4e). Within this subset, BACH1 levels are high in 36% of TNBC samples versus 26% of non-TNBC samples (Extended Data Fig. 8a). Consistent with our preclinical results, BACH1 expression correlates inversely with ETC expression in individual patient tumours (Fig. 4e). Notably, BACH1 mRNA expression is enriched not only in breast cancer, but also in many other types of cancer including lung, kidney, uterine and prostate cancer, and acute myeloid leukaemia (Extended Data Fig. 8b, c). KEGG analyses of genes that negatively correlate with BACH1 expression in tumours from patients with cancer (Fig. 4e). Among tumours (Fig. 4e). Within this subset, BACH1 levels are high in 36% of TNBC samples versus 26% of non-TNBC samples (Extended Data Fig. 8a). Consistent with our preclinical results, BACH1 expression correlates inversely with ETC expression in individual patient tumours (Fig. 4e). Notably, BACH1 mRNA expression is enriched not only in breast cancer, but also in many other types of cancer including lung, kidney, uterine and prostate cancer, and acute myeloid leukaemia (Extended Data Fig. 8b, c). KEGG analyses of genes that negatively correlate with BACH1 expression in tumours from patients with cancer (Fig. 4e). Among tumours (Fig. 4e).
mitochondrial respiration, levels of both glycolytic and TCA metabolites, and PDK transcription and PDH1 phosphorylation are consistent with alterations in metabolic pathways and carbon-source use upon BACH1 loss. To our knowledge, the role of BACH1 as a regulator of metabolism has not previously been recognized or studied. Thus, the downstream mechanisms driving the metabolic alterations that we observe upon BACH1 depletion, such as the differences in glutamine and glucose utilization in the TCA cycle, open new areas for investigation. Whereas the targets of BACH1 that we have characterized reflect the most marked changes in enzymes that regulate mitochondrial metabolism, there may be other targets that could potentially affect mitochondrial metabolism in this way.

The marked inverse correlation between BACH1 and ETC gene expression in individual patients raises the possibility that these biomarkers may be useful for prediction of metformin therapeutic outcome. Our findings also suggest a potential combination therapeutic strategy by repurposing two FDA-approved drugs, hemin and metformin (Fig. 4g). Targeting the BACH1 pathway represents a novel approach to enhance the efficacy of inhibitors of mitochondrial metabolism through restriction of metabolic plasticity. More generally, we propose reprogramming the metabolic network to decrease metabolic variance and increase the fraction of cells with increased dependence on mitochondrial respiration. This approach could also be applied to other tumour types that use BACH1 or other key regulators of mitochondrial metabolism.

Online content
Any methods, additional references, Nature Research reporting summaries, source data, statements of data availability and associated accession codes are available at https://doi.org/10.1038/s41586-019-1005-x.

Received: 25 April 2017; Accepted: 6 February 2019; Published online: 06 March 2019

Acknowledgements We thank G. Greene and members of his laboratory for sharing the PDX tumors. This study was supported by NIH R01CA184494 (M.R.R.), R01GM121735 (M.R.R.), NIH R01CA172657 (D.K.N.), DoD Breakthrough Breast Cancer BC161588 (J. Lee), NIH R01AI131267 (M.G.B.), 1RS5EO5028149 (M.G.B.) and NIH R01CA193256 (J.W.L.). We also thank G. Balasaz and members of the Rosner laboratory for careful reading of the manuscript.

Reviewer information Nature thanks Matthew J. Ellis, Kazuhiro Igarsahii and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author contributions J. Lee and M.R.R. contributed overall experimental design, J. Lee, performed most experiments, A.E.Y. contributed bioinformatics analyses, J.P.W. contributed to BACH1(mut) experiments, C.F. contributed to gene array analyses, P.C.H. and M.G.B. contributed Seahorse experiments, E.A.G. and D.K.N. contributed mass spectrometry analysis of metabolites, J. Liu, S.M.S. and J.W.L. contributed tracing analysis, J. F., F.D.R. and P.T. contributed to cell culture and xenograft experiments, M.E. and D.C.R. contributed to FOX experiments, J.A. contributed biostatistics analyses, M.R.R. and J. Lee supervised the project, analysed data and wrote the manuscript with assistance from J.W.L. All authors reviewed the manuscript.

Competing interests The authors declare no competing interests.

Additional information Extended data is available for this paper at https://doi.org/10.1038/s41586-019-1005-x.

Supplementary information is available for this paper at https://doi.org/10.1038/s41586-019-1005-x.

Reprints and permissions information is available at http://www.nature.com/reprints.

Correspondence and requests for materials should be addressed to M.R.R.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2019
METHODS

Cell cultures. Human breast cancer cell lines (MDA-MB-436, MDA-MB-468) and non-malignant mammary epithelial cells (MCF10A and 184A1) were obtained from ATCC, and BM1 cells were obtained from A. Minn (University of Pennsylvania) and cultured as previously described20,26,28. Cancer cells were maintained in high-glucose DMEM (25 mM glucose, 4 mM glutamine, without pyruvate) supplemented with 10% FBS (VWR, 89510-085) and penicillin–streptomycin (100 U ml−1, 100 mg ml−1), but cultured in glucose-deprived conditions (1–2.5 mM glucose) that mimic tumour microenvironment with 10% FBS and penicillin–streptomycin when treated with inhibitors. Stable knock-down of BACH1 was performed using a lentiviral construct containing shRNA targeting BACH1 (shBACH1 clone 1: TATGCACAGAAGATTCATAGG; shBACH1 clone 2: ATATCAGTGATACATTTGCCCG). Transfected breast cancer cells were selected with puromycin (0.2 μg ml−1) in medium growth for 10 days. Mycoplasma detection was routinely performed to ensure cells were not infected with mycoplasma using MycoAlert Detection kit (Lonza, LT07-218). Cell lines were authenticated by short tandem repeat analysis.

qRT-PCR. Total RNA from cells and tumour samples was isolated using Trizol (Invitrogen) according to the manufacturer’s instructions. Two micrograms of total RNA was adapted for qRT-PCR (Applied Biosystem) to generate cDNA. Real-time PCR was carried out using a LightCycler 96 (Roche) and Fast Start Essential DNA master mix (2X) reagent. Cq values normalized relative to the expression of endogenous control genes using 2−ΔΔCq were plotted. Primer pairs used are shown in Extended Data Table 1.

Cell growth and viability assays. For cell growth assays, breast cancer cells (5×104 per well) or non-malignant mammary epithelial cells (18×103 cells per well) were plated on 96-well plates to observe growth of cells every 4 h by phase-contrast imaging and shown as percentage confluence of area covered by cells using an IncuCyte Zoom Live Cell Analysis system (Essen Bioscience). After 24 h of plating, inhibitors were added and monitored until control cells reached 100% confluence. One hundred percentage confluence refers to complete coverage of the plates by cells. To determine cell viability, cells were seeded in black-walled 96-well plates overnight and treated with inhibitors. After 48 h, cells were treated with Calcein AM (R&D system) in PBS for 1 h at 37°C to measure absorbance with excitation at 420 nm and emission at 520 nm using a Victor3 plate reader (PerkinElmer). The absorbance was used to reflect live cell numbers and was normalized to those in control or with vehicles and shown as relative viability (%).

Chemicals. Hemin (Sigma, H9039 and 51280) was prepared in 20 mM NaOH for in vitro assays or further diluted in PBS (1:5) to adjust pH 7.5 and filter-sterilized using 0.22-μm filters for mouse treatments. Rotenone (Sigma, R8875), antymycin A (Sigma, A8674) and metformin hydrochloride (Sigma, P841004) were prepared as stock solutions and added to growth medium. Sodium pyruvate (Gibco, 11360), Δ-glucose (Sigma, G8769) or l-glutamine (Invitrogen, 2530001) was added to growth medium before use. dimerized binding by use of DTT (300 mg ml−1) and l-Glutamine (13C, 99%) were purchased from Cambridge Isotope Laboratories.

siRNA. siRNAs for UQCRNCi (Human UQCRNCi Flexi tube siRNA, SI00501275, Qiagen, CCGGCAACTTGGGCTCTTGCA), COX15 (Human COX15 Flexi Tube siRNA, SI01418091, Qiagen, TGGCGCGTTGAGCGCTTTGAA) or siRNA control (Universal Scrambled negative control siRNA, SR30004, Origen, UGGUGUUAUAGUGCUAUA, UGGUGUUAUAGUGCUAUA, UGGUGUUAUAGUGCUAUA) were transfected into breast cancer cells with Lipofectamine 3000 (Invitrogen) in OPTI-MEM overnight.

ChIP assays. Two million cells were plated on 10-cm plates overnight before crosslinking with 10% formaldehyde for 10 min followed by quenching with glycine (0.125 mM) for 3 min. After washing cells with cold PBS, total cell lysates in ice were sonicated at 80% output for 10 s with a 10-s pause for 4 cycles and pre-cleared with IgG (Santa Cruz, sc-2028) for 1 h at 4°C. Supernatants were precipitated with antibodies against BACH1 (AF5776, R&D System), RNA Pol II phospho-S5 (Abcam, ab1311), histone H3 tri methyl K27 (Abcam, ab6602) or IgG (normal mouse IgG, Santa Cruz, sc-2028) overnight at 4°C and washed for PCR as previously described20. Primers for ChIP-PCR are shown in Extended Data Table 1.

Immunoblotting. Whole-cell or tumour lysates were prepared using RIPA buffer (Sigma, R2678) with protease inhibitor cocktail kit III (Millipore, 539134) and phosphatase inhibitor. Gels were electrophoresed, transferred to nitrocellulose membranes, probed with antibodies against COX15 (Sigma, av46442-100UL), NDUFA9 (Abcam, ab14713), and α-tubulin (Santa Cruz, sc-28199). Blots were imaged, processed and quantified using a Licor Odyssey FC, dual-mode imaging system (Licor).

Lung metastasis. Whole fixed lungs were evaluated by serial sectioning every 100 μm and followed by haematoxylin and eosin (H & E) staining (Human Tissue Resource Center, University of Chicago) for visualization of lung metastases under a microscope (EVOS XL cell imaging system, Thermo Fisher).

Mouse experiments. All animal protocols related to mouse experiments were approved by the University of Chicago Institutional Animal Care and Use Committee (IACUC #72228). No statistical methods were used to predetermine sample size. The experiments were not blinded to allocation during experiments and outcome assessment. Two million human breast cancer cells (MDA-MB-436, MDA-MB436-shCont, MDA-MB436-shBACH1, BM1-shCont, BM1-shBACH1, BM1-shBACH1+BACH1(mut), BM1-shBACH1+BACH1(WT)) in 100 μl PBS were injected into the fourth mammary fat pad of 5 to 6 week-old athymic nude female mice (Charles River Laboratories). When tumours reach about 20–30 mm3 in volume, mice were randomized into groups for treatment with hemin (50 mg kg−1 day−1) or vehicle (20 mM NaOH in phosphate buffered saline) by intraperitoneal injection 10 days before metastasis treatment. Metformin (200 mg kg−1 day−1 for BM436 xenograft; 300 mg kg−1 day−1 for BM1 xenograft and PDX mice) was provided in drinking water ad libitum.

For BACH1-expressing TNBC PDX models, frozen PDX tumours (no. 2147 and no. 4195)36 in 0.5 ml of sterile HBSS were prepared in a volume of 10–20 mm3. In brief, tumour fragments were implanted into the mammary fat pads of five-week-old SCID-beige mice following standard procedures. When tumours reached 50 mm3 in volume, hemin (50 mg kg−1 day−1, intraperitoneal injection) or vehicle was administered until the end of the experiment. Tumour growth was monitored weekly by caliper measurement in two dimensions to generate ellipsoid volumes using the equation of volume = 0.4 × (length × width)2. Tumour weight was measured at the end of drug treatment in all mouse experiments. Tumour size (volume and weight) was shown as mean ± s.e.m. with P values determined by two-tailed t-test or two-way ANOVA with multiple comparisons. Experimental end point was reached when tumour growth reached 2 cm in diameter. Body weights of all mice were monitored regularly before and after treatment. Mouse experiments were performed one time per tumour model.

Statistics. Gene expression in patient data, qRT-PCR, ChIP assays, viability assays, metabolomics, tracing analyses and tumour sizes were analysed to compare values measured in control groups relative to shBACH1 or hemin-treated cells by two-tailed student’s t-test using GraphPad Prism v7.0a software. In vitro experiments were independently repeated at least three times for statistical analyses. For ChIP assays, at least three independent biological replicates were used for relative enrichment of BACH1 on the designated promoter regions compared to IgG enrichment. For viability assays, at least six biological replicates of shBACH1 or hemin-treated cells were analysed to compare to shRNA control cells or vehicle-treated cells (shown 100%), respectively. For assays involving cell growth using IncuCyte Zoom or metabolic phenotype using Seahorse, P values were determined by paired two-tailed t-test. For co-expression analyses using data from patients with cancer, Pearson’s and Spearman’s correlation coefficients were used. For in vivo mouse experiments, at least five mice were used for each experimental group. Mouse allocation to treatment groups was randomized when tumours reached palpable minimum size, and mice that failed tumour formation were excluded from the experiments. No blinding was done for drug treatment or tumour measurement. Ratios of gene expression in xenografts were validated by the Center for Research Informatics (CRI) at University of Chicago.

Gene set analysis and gene set enrichment analysis. The R package GSA27 was used to determine which gene sets were enriched in the shBACH1 phenotype.
Two hundred permutations were used to estimate FDR. Enriched gene sets with FDR-corrected P values higher than 5% were filtered out. After the initial enrichment analysis, positively correlated (enrichment score >0) and negatively correlated (enrichment score <0) were considered separately.

Gene set enrichment analysis (GSEA) was conducted on the desktop version of the GSEA software (v2.2.3). The 'max-probe' option was used for collapsing expression values of genes with multiple probes. Gene-set size was limited to an arbitrary cut-off of up to 500 genes per set, and genes were ranked by significance as defined by FDR-corrected P value <. As above, 200 permutations were used to estimate FDR for GSEA analysis.

Analysis of data from patients with breast cancer. For TCGA, BACH1 expression data (RNA Seq V2 RSEM) from 817 publicly available cases of breast cancer were downloaded from the cBioPortal website38,39. For METABRIC, GSE2023 and GSE11121 datasets, the Breast Cancer Genome Biol. Database for pan-cancer analysis. For BACH1-depleted BM1 and control cells (2 x 10^6 cells) were cultured in 10-cm dishes with DMEM (10 mM glucose, 4 mM glutamine, 10% FBS) for 16 h and dried using a speed vac for 3 h for the further liquid chromatography–mass spectrometry (LC–MS) analysis. 13C metabolic tracer analyses.

To monitor incorporation of 13C into metabolites, BACH1-depleted BM1 and control cells (2 x 10^6 cells per well) were cultured in 10-cm dishes with DMEM (10 mM glucose, 4 mM glutamine, 10% FBS) for 16 h and serum-starved for 2 h. Cells were washed with PBS three times, collected in 1 ml PBS per replicate, and flash-frozen for 17 min at 0.5 ml min^-1 before equilibrating for 5 min at 0.1 ml min^-1 for 5 min to alleviate backpressure associated with injecting chloroform. The gradient began at 0% B and increased linearly to 100% B over the course of 45 min at a flow rate of 0.4 ml min^-1, followed by an isocratic gradient of 100% B for 17 min at 0.5 ml min^-1 before equilibrating for 8 min at 0% B with a flow rate of 0.5 ml min^-1.

Mass spectrometry analysis was performed with an electrospray ionization source on an Agilent 6430 or 6460 QQQ LC–MS/MS (Agilent Technologies). The capillary voltage was set to 3.0 kV, and the fragmentor voltage to 100 V. The drying gas temperature was 350 °C, flow rate was 10 ml min^-1, and nebulizer pressure was 35 psi. Metabolites were identified by selected reaction monitoring of the transition from precursor to product ions at associated optimized collision energies and retention times as previously described45. Metabolites were quantified by integrating the area under the curve, and then normalized to internal standard values. 13C metabolic tracer analyses. To monitor incorporation of 13C into metabolites, BACH1-depleted BM1 and control cells (2 x 10^6 cells per well) in six-well plates were cultured in DMEM containing 10 mM of uniformly labelled 13C glucose (4 mM 12C glutamine), 4 mM uniformly labelled 13C glutamine (10 mM 12C glucose), or 10 mM 13C glucose and 4 mM 13C glutamine for 16 h and harvested in 80% methanol in water on dry ice. After a freeze–thaw cycle at ~80 °C, cell supernatants were collected by centrifugation at 20,000g for 10 min and dried using a speed vac for 3 h for the further liquid chromatography–mass spectrometry (LC–MS) analysis. 13C metabolic tracer analyses were performed as previously described46,47. Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this paper.
Extended Data Fig. 1 | See next page for caption.
Extended Data Fig. 1 | BACH1 expression is high in patients with TNBC and suppresses expression of ETC genes at their promoter.

a, Left, BACH1 expression levels (determined by RNA-seq) with respect to relative DNA copy-number alterations in TCGA breast cancers (n = 1105). Middle, BACH1 expression (RNA-seq) in TNBC (n = 83) or non-basal (n = 424) breast cancers using Pam50 classification of TCGA data. Right, breast cancer subtypes classified by Pam50 (n = 522 total, n = 98 basal, n = 58 HER2-enriched, n = 231 luminal-A, n = 127 luminal-B, n = 8 normal-like). Two-tailed t-test. b, BACH1 expression levels (by RNA-seq) in patients with TNBC compared to patients that did not have TNBC, using the datasets of patients with breast cancer of METABRIC (n = 2509), GSE2034 (n = 286) and GSE11121 (n = 200). Two-tailed t-test. c, Gene Ontology terms as determined by gene set analysis for cell components that are positively correlated with BACH1 depletion based on microarray analysis of BM1-shBACH1 cell transcripts. n = 3 biologically independent samples, FDR-corrected P < 0.05. d, Left, relative mRNA levels of mitochondrial inner membrane genes in MB436-shBACH1 cells (two shBACH1 vectors, clone 1, clone 2) compared to the wild type control (MB436-shCont). Data are mean ± s.e.m., n = 3 biologically independent samples, two-tailed t-test. Right, representative western blots of mitochondrial genes using MB436-shBACH1 or control cell lysates. Each experiment was repeated independently three times with similar results. Band density quantification is shown below the blots. e, Schematic showing proximal BACH1 binding on the promoter regions of mitochondrial membrane genes. TSS, transcription start site. Arrows, primers used for ChIP-PCR. f, ChIP assays showing relative fold enrichment of BACH1 recruitment to the HMOX1 promoter using BACH1-depleted TNBC (BM1 and MB436) or control cells. g, h, ChIP assays showing fold enrichment of BACH1 and H3K27me3 recruitment to the mitochondrial membrane genes in low-BACH1-expressing MB468 and MB436 cells. For ChIP assays in f-h, data are mean ± s.e.m., n = 3 biologically independent samples, two-tailed t-test. i, KEGG pathways demonstrating the negative correlation between BACH1 expression and oxidative phosphorylation in all patients with breast cancer (n = 1,105, left) and patients with TNBC (n = 119, right). FDR values (−log10(FDR)) are generated in the R package GOseq using the default program Wallenius P values with Benjamini–Hochberg-corrected P values. j, Expression of ETC genes (COX15, ATP5D and ATP5G2 (also known as ATP5MC2)) in TNBC compared to tumours from patients that did not have TNBC using multiple breast cancer datasets: METABRIC (TNBC n = 319, non-TNBC n = 1661), GSE2034 (TNBC n = 54, non-TNBC n = 232) and GSE11121 (TNBC n = 33, non-TNBC n = 150). P values are determined by two-tailed t-test. k, Co-expression plots of UQCRC1 or ATP5D and BACH1 in TCGA breast cancer (n = 1,105) or TNBC (n = 115) dataset. Pearson's and Spearman's correlation coefficients are shown.
Extended Data Fig. 2 | See next page for caption.
Extended Data Fig. 2 | BACH1 depletion increases mitochondrial metabolism. a, Measurement of OCR and ECAR in BM1 or MB436 cells expressing control or shBACH1. Data are mean ± s.e.m., n = 6 biologically independent samples, unpaired two-tailed t-test. b, Relative abundance of steady-state metabolites in BM1-shBACH1 or control cells cultured with DMEM (glucose, 10 mM) measured by mass spectrometry. Pyr, pyruvate; Lac, lactate. Data are mean ± s.e.m., n = 5 biologically independent samples, two-tailed t-test. c, d, Fractional isotopic incorporation of [U-13C₆]-glucose (c) or [U-13C₅]-glutamine (d) into the metabolites in glycolysis and the TCA cycle are shown. Data are mean ± s.e.m., n = 4 biologically independent samples, two-tailed t-test. M indicates number of carbons labelled. Fraction is ratio of isotopologues to sum of all isotopologues. e, Relative mRNA and protein levels of PDH and PDK genes in MB436-shBACH1 cells compared to controls. qRT–PCR data are mean ± s.e.m., n = 3 biologically independent samples, two-tailed t-test. Representative images of western blots are shown. Band density quantification is shown below the blots. Each experiment was repeated independently three times with similar results. f, ChIP assays showing fold enrichment of BACH1 recruitment to promoters of PDK genes using MB436 and MB468 cells. Data are mean ± s.e.m., n = 3 biological replicates per cell line, two-tailed t-test. g, Relative mRNA levels of pyruvate carboxylase (PC) in shBACH1 cells compared to control. Data are mean ± s.e.m., n = 3 biologically independent samples. NS, not significant by two-tailed student's t-test.
Extended Data Fig. 3 | BACH1 levels determine response to ETC inhibitor treatment in breast cancer cells. a, Cellular growth (per cent confluence) of BACH1-depleted cells (BM1-shBACH1 or MB436-shBACH1) or their controls treated with vehicle (veh), metformin (met), rotenone (rot) or antimycin A (ant). b, c, Relative cell viability (%) of BACH1-depleted cells (BM1-shBACH1 or MB436-shBACH1) or their controls treated with vehicle, metformin, rotenone or antimycin A. d, e, Cellular growth (per cent confluency) (d) or cell viability (%) (e) of low-BACH1 (MB468), medium-BACH1 (MB436) or high-BACH1 (BM1)-expressing TNBC cells treated with vehicle (control), 1 mM metformin, or 1–10 mM metformin. f, Cell viability (%) of non-malignant mammary epithelial cells (MCF10A and 184A1) treated with vehicle, metformin, rotenone or antimycin A. For cell viability and growth assays in a and d, values are mean ± s.e.m., n = 6 biologically independent samples, unpaired two-tailed t-test. Arrow indicates the time at which inhibitors were added. For cell viability assays in b, c, e and f, cells were incubated for 48 h after addition of inhibitors and stained with CaAM for 1 h.
Extended Data Fig. 4 | Rescue of BACH1-depleted TNBC cells from metformin treatment.

a, Cellular growth (per cent confluency) of BM1-shBACH1 or control cells treated with vehicle or metformin in growth medium containing glucose (1 mM) and supplemented with or without pyruvate (2.5 mM). **b**, Relative NAD+/NADH ratios in BACH1-depleted BM1 cells treated with pyruvate (2.5 mM) and/or metformin (5 mM) for 24 h. Data are mean ± s.e.m., n = 3 biologically independent samples, two-tailed t-test. **c**, Representative western blots of COX15, UQCRC1 and α-tubulin using BM1-shBACH1 cell lysates transfected with siCOX15 (150 nM), siUQCRC1 (150 nM), and siControl (150 nM). Each experiment was repeated independently two times with similar results. **d**, Cellular growth (per cent confluence) of BM1-shBACH1 cells transfected with siRNA for COX15 and/or UQCRC1 and treated with vehicle or metformin (10 mM). For **a** and **d**, data are mean ± s.e.m., n = 6 biologically independent samples, unpaired two-tailed t-test between vehicle-treated and metformin (10 mM)-treated group. **e**, Relative OCT1 (also known as SLC22A1, left), PPARG and PGC1α (also known as PPARGC1A, right) mRNA levels in BM1-shBACH1 cells. Data are mean ± s.e.m., n = 3 biologically independent samples.
Extended Data Fig. 5 | See next page for caption.
Extended Data Fig. 5 | Hemin treatment of cells expressing wild-type BACH1 or hemin-resistant BACH1(mut). a, Left, cellular growth (per cent confluence) of BM1 and MB436 cells treated with hemin (10, 20, 40 or 80 μM) as indicated. Right, representative western blots of BACH1 from MB436 cells after treatment with hemin (10–40 μM) for 24 h (see also Fig. 3d). Each experiment was repeated independently three times with similar results. b, Relative mRNA levels of mitochondrial membrane genes in MB436 cells treated with vehicle or hemin (20 μM) for 48 h. and representative western blots. Data are mean ± s.e.m., n = 3 biologically independent samples, two-tailed t-test. Band density quantification is shown below the blots. c, Measurement of OCR or ECAR of BM1 cells treated with vehicle or hemin (full data from Fig. 3b). d, Cell viability (%) of BM1 cells treated with vehicle, hemin (20 μM) or ETC inhibitors (metformin, rotenone or antimycin A) for 48 h. e, Cell viability (%) or cell growth (per cent confluence) of MB436 cells treated with vehicle, hemin (20 μM) or metformin (1 mM). f, Representative western blots from MB436-shBACH1 cells transiently transfected with Bach1mut (100 ng) and treated with vehicle or hemin (10, 20, 40 or 80 μM) for 48 h. Each experiment was repeated independently three times with similar results. g, Measurement of OCR in BM1 or MB436 cells stably expressing shControl, shBACH1 or shBACH1 + Bach1mut vectors. h, Relative mRNA levels of mitochondrial genes in BM1-shBACH1 cells, shCont, or BM1-shBACH1 cells transfected with BACH1(mut). Data are mean ± s.e.m., n = 3 biologically independent samples, two-tailed t-test. i, Left, cell viability (%) of BM1-shBACH1 cells transfected with BACH1(mut) and then treated with hemin (20 μM) or vehicle for 48 h. Right, representative western blots showing BACH1(mut) from cells treated with vehicle or hemin. j, Measurement of OCR and ECAR of BM1-shBACH1 cells expressing BACH1(mut) pre-treated with hemin. Conditions for OCR and ECAR, and statistics are the same as in Extended Data Fig. 2a. Data are mean ± s.e.m., n = 6 biologically independent samples. k, Cell viability (%) of MB436 cells stably expressing shRNA-resistant BACH1(WT), BACH1(mut) or shCont vectors treated with vehicle, hemin (20 μM) or metformin (5 mM) for 48 h. Representative western blots of BACH1 expression are shown. Each experiment was repeated independently three times with similar results. For growth and viability assays in a, d, e, i, j and k, data are mean ± s.e.m., n = 4 biologically independent samples, unpaired two-tailed t-test.
Extended Data Fig. 6 | Metformin suppresses growth of BACH1-depleted breast tumours. a, Tumour weights and volumes of mice injected with MB436-shBACH1 or control cells (left, n = 6–7 per group) or BM1-shBACH1 or control cells (right, n = 8–10 per group) and treated with vehicle or metformin. Data are mean ± s.e.m., unpaired two-tailed t-test. b, Tumour images of representative mice in each treatment group of mouse models. Scale bar, 1 cm. c, Primary tumour (%) indicates the ratio of mice with tumours or tumour-free upon metformin treatment compared to the total number of mice per treatment group at the end of experiment. d, Body weights of mice monitored before and after treatment of hemin and metformin. Arrow indicates initiation of hemin (H) or metformin (M) treatment. e, Relative mRNA expression of PDK and PDH mRNAs in tumours from MB436-shBACH1 xenograft mice by qRT–PCR. Data are mean ± s.e.m., n = 2 per group. f, Representative western blots of total PDH, BACH1 and mitochondrial membrane proteins (COX15, SLC25A15, NDUFA9) using MB436-shBACH1 or control tumour lysates. Each experiment was repeated independently three times with similar results. g, Lung metastases from mice with MB436-shBACH1 or control xenograft tumours. Lung tissues sectioned and H & E-stained to visualize and count lung metastases in mice. n = 5 mice per group. Data are mean ± s.e.m., two-tailed unpaired t-test. h, Representative lung metastasis images. Arrow indicates tumour metastases with a scale bar (1000 μm).
Extended Data Fig. 7 | See next page for caption.
Extended Data Fig. 7 | Combination treatment using hemin and metformin suppresses growth of tumours through BACH1 in multiple TNBC mouse models.

a. Left, monitoring of BACH1 degradation by hemin treatment assayed by western blotting using tumour lysates. Mice (*n* = 2 per treatment group) injected with BM1 cells (2 × 10⁶ cells) for 4 weeks to form tumours were treated with 25 mg kg⁻¹ or 50 mg kg⁻¹ hemin for the indicated times. Right, representative western blots showing relative BACH1 expression using tumours from mice treated with hemin for the experiments (see Fig. 4a–d). Western blotting experiments were repeated at least twice with similar results.

b. Schematic depicting experimental plans with timeline for cancer cell injection, hemin treatment (50 mg kg⁻¹ day⁻¹) or metformin treatment (200–300 mg kg⁻¹ day⁻¹) using TNBC mouse models. c, Representative western blots showing relative BACH1 expression from xenograft tumour models using tumours derived from BM1 cells, MB436 cells or two independent patients (*n* = 2 biologically independent samples). Western blotting experiments were repeated twice with similar results.

d. Relative tumour volumes of BM1 or PDX (no. 4195) mouse xenograft monitored weekly during treatment with vehicle, hemin or metformin. Tumour volume data are mean ± s.e.m., two-way ANOVA with multiple comparisons. BM1 tumours (vehicle *n* = 10, hemin *n* = 10, metformin *n* = 10, hemin + metformin *n* = 5) or PDX tumours (vehicle *n* = 9, hemin *n* = 10, metformin *n* = 8, hemin + metformin *n* = 7). e, Tumour weights, collected and measured at the end of the treatment using hemin and metformin of MB436, BM1-xenograft, or two PDX models (no. 2147 and no. 4195). Data are mean ± s.e.m. with *P* values using unpaired two-tailed *t*-test.

f. Representative tumour images from each treatment group of MB436, BM1-xenograft or two PDX models are shown. Scale bar, 1 cm.

g. Representative western blots of BACH1 using tumour lysates from mice xenografted with BM1-shCont, BM1-shBACH1 expressing BACH1(mut) or BM1-shBACH1 expressing wild-type BACH1. h, Tumour weights from mice xenografted with MB436-shBACH1 cells expressing BACH1(mut) and treated with vehicle, hemin or metformin. Data are mean ± s.e.m., two-tailed *t*-test.

i, j. Tumour growth of BM1 BACH1(mut) (vehicle *n* = 5, hemin *n* = 4, metformin *n* = 5, hemin + metformin *n* = 5) or wild-type BACH1 xenografts (vehicle *n* = 5, hemin *n* = 4, metformin *n* = 4, hemin + metformin *n* = 5) treated with vehicle or hemin and representative tumour images from each treatment group of mice. Scale bar, 1 cm. Representative western blots showing BACH1 expression in multiple mouse tumour lysates.
Extended Data Fig. 8 | See next page for caption.
Extended Data Fig. 8 | BACH1 expression in multiple cancer types.
a, Distribution of BACH1 expression in TNBC. Clinical and RNA-seq data associated with the TCGA cohort of patients with breast cancer were accessed at https://www.cbioportal.org/. Out of all provisional cases \((n = 1,105)\), breast cancer samples \((n = 914)\) that had clinical information regarding receptor status of ER, PR (also known as PGR) and HER2 (also known as ERBB2) based on immunohistochemistry analysis as well as RNA-seq data for BACH1-related genes were analysed. The TNBC subgroup among these 914 samples were identified as samples that are negative for all three receptors \((n = 115)\). If the immunohistochemistry results were positive, indeterminate or equivocal for any of the three receptors, those samples were grouped in non-TNBC \((n = 799)\). BACH1 status of the samples were based on an arbitrary 0.5 cut-off for the \(z\)-score transformed RNA-seq expression values for the BACH1 gene \((245\) BACH1-high cases with \(z\)-score > 0.5; 301 BACH1-low cases with \(z\)-score < 0.5).

b, Frequency (%) of patient tumours with overexpression of BACH1 compared to their matched normal tissues across multiple TCGA cancer types. Numbers of patients relative to healthy controls are indicated in the plot.

c, Enriched BACH1 expression (RNA-seq) in TCGA provisional cancer datasets. Red bar indicates median BACH1 expression level in breast cancers.

d, Extended plots from KEGG pathway analyses in Fig. 4f, carried out using DAVID using Benjamini-corrected \(P\) values (FDR), of genes that are negatively correlated with BACH1 expression. The top eight most-significantly enriched pathways with FDR values \((-\log(\text{FDR}))\) are shown for each cancer type: colorectal, liver, lung, skin, ovary, pancreas, prostate and TNBC.

e, Co-expression plots of UQCRC1 and BACH1 in TCGA cancers such as prostate \((n = 497)\), skin \((n = 472)\), liver \((n = 371)\) and colon \((n = 379)\). Pearson’s \((< -0.3)\) and Spearman’s \((< -0.3)\) correlation coefficients are shown.
Extended Data Fig. 9 | OncoPrint analyses of multiple cancer types. a–d, Heat maps demonstrating upregulation (red) or downregulation (blue) of BACH1 and ETC genes across TCGA tumours (a, prostate carcinoma TCGA provisional, n = 497; b, patients with skin cutaneous cancer TCGA provisional, n = 472; c, patients with liver cancer TCGA provisional, n = 371; d, patients with colorectal cancer TCGA provisional, n = 379).
Extended Data Table 1 | List of primers for gene expression analysis using qRT–PCR and ChIP assays

<table>
<thead>
<tr>
<th>Genes</th>
<th>Forward primer (5’-3’)</th>
<th>Reverse primer (3’-5’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACH1</td>
<td>CACCAGAAGCACTGCGTTATCC</td>
<td>GCTGGTGTGGAGTAACTGTGTGC</td>
</tr>
<tr>
<td>ATP5J</td>
<td>GCTTCTCCCTCTGTCATCCTCCT</td>
<td>TCCAGATGTCTGCGATCATCAG</td>
</tr>
<tr>
<td>ATP5G</td>
<td>CCAAGTGTTGACATACAGCAATC</td>
<td>CCCATTTAAATACCCGTAAGACCTC</td>
</tr>
<tr>
<td>ATP5D</td>
<td>TCCACAGCGTGTGCTCAGCTCT</td>
<td>GGAACCGCTGTCTCACAAGT</td>
</tr>
<tr>
<td>COX15</td>
<td>CAGCCGCGTTGGACACAGTG</td>
<td>GCCAGAATCTGGAACACTAGT</td>
</tr>
<tr>
<td>COX18</td>
<td>GGGCGACTTTGCTGCTTCC</td>
<td>CCCAATGATTGGAGCGAAGC</td>
</tr>
<tr>
<td>HSD3B</td>
<td>CATATGCCCCGCTCCCTAC</td>
<td>GTGCGGCGTTTTTCAGATTC</td>
</tr>
<tr>
<td>MRPL10</td>
<td>CACGCTGCTGCACTGACTT</td>
<td>CGGCTATCATCGGTGTTCTC</td>
</tr>
<tr>
<td>NDUFA9</td>
<td>GTACGGTCTGCTGCACTGCTG</td>
<td>GGTGGTTGACACATATCGC</td>
</tr>
<tr>
<td>NDUFB6</td>
<td>CCACAGAAGTGGGCGCTGTATG</td>
<td>TCCAGAGTACAGCTCGGAC</td>
</tr>
<tr>
<td>NDUFS7</td>
<td>CTTCTGAGCAGCTGACAGCAG</td>
<td>GGAATAGTGGTAGTACTCCCTC</td>
</tr>
<tr>
<td>OCT1</td>
<td>GTGAGCTAGCCAAGTCTGCTG</td>
<td>GTGAGCTAGCCAAGTCTGCTG</td>
</tr>
<tr>
<td>PDHA</td>
<td>ATGATTGCTGAGCTGATTTGC</td>
<td>ATTCGCCGATGACTGCTGATC</td>
</tr>
<tr>
<td>PDBB</td>
<td>AAGAGGCCGTTGCTGCTGAC</td>
<td>ACTAACCCTGTATGCACATC</td>
</tr>
<tr>
<td>PDHX</td>
<td>TTGGAGGGTTCGACCTGCTG</td>
<td>CAACCGTCGAGCTGACTG</td>
</tr>
<tr>
<td>SLC25A15</td>
<td>CCTAGAAGCTTTTCGAGCTG</td>
<td>GCGATGGTTGGCAGTAAGTC</td>
</tr>
<tr>
<td>SLC25A22</td>
<td>CCATGAGGCTCCCGTATCATTG</td>
<td>GAGGCGATGCGAGCATG</td>
</tr>
<tr>
<td>TIMM17A</td>
<td>GGTTGGGCGGTTAAGTGGCTG</td>
<td>GCCCTGGGTTTAAATGCTGTCA</td>
</tr>
<tr>
<td>TIMM8B</td>
<td>TCACCAATGCGAGACTTGTTGG</td>
<td>AGAAATTTTCAGTGCAGAGCT</td>
</tr>
<tr>
<td>UCP3</td>
<td>TGTGGCTGACTGCTGATCC</td>
<td>GAGGGAGCTCATAGGCGAGAT</td>
</tr>
<tr>
<td>UQCRCL</td>
<td>GGAGAGTCAGATGATTCATGG</td>
<td>GTGTTCCAGAGGCTAAC</td>
</tr>
</tbody>
</table>

Primers for ChIP assays

<table>
<thead>
<tr>
<th>Genes</th>
<th>Forward primer (5’-3’)</th>
<th>Reverse primer (3’-5’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATP5D</td>
<td>GAGGAAGCGCTGGTCAGGCTC</td>
<td>CAGGGAAGACCCAGCTGTGT</td>
</tr>
<tr>
<td>ATP5J</td>
<td>AAATGAGTGGAGGAGAGGCC</td>
<td>GAAATGAGGAGGAGGAGGCC</td>
</tr>
<tr>
<td>COX15</td>
<td>TGGGACAGGGAGGAGGAGTATT</td>
<td>TGGTCGCTTTTTTCTATTC</td>
</tr>
<tr>
<td>COX18</td>
<td>ACTGTTGATGCGATGGGAAGCCA</td>
<td>AAAAGCCACACTGTTCCA</td>
</tr>
<tr>
<td>SLC25A22</td>
<td>GCCAGGTCAGGGGAAACA</td>
<td>CATGTCAAGGAAAGCCGAGT</td>
</tr>
<tr>
<td>TIMM8B</td>
<td>AGCCCCATACCTGTAGCCA</td>
<td>CCCGTGCTGAACAAAGATCA</td>
</tr>
<tr>
<td>UCP3</td>
<td>AAACCTCGCTCGAAAGCAGCC</td>
<td>CACCTCAGGAGAGCAGAA</td>
</tr>
<tr>
<td>UQCRCL</td>
<td>GTGGAGGGATGGGTGAGAAGTA</td>
<td>GTGTTACCTGCTGCTGCTG</td>
</tr>
<tr>
<td>PDK1</td>
<td>AAACAGGGCAGCTGGAAGT/</td>
<td>GTGAGGGGAGGATGCTAGTC</td>
</tr>
<tr>
<td>PDK2</td>
<td>TGCCACAAAGGAGACTCTCAG</td>
<td>TGGACCTTGAGGAAAGACT</td>
</tr>
<tr>
<td>PDK3</td>
<td>ACACAAACGTCAAGAGGCGCA</td>
<td>GAGTCGTTGCTGCAAGT</td>
</tr>
<tr>
<td>PDK4</td>
<td>GGCTTGGTTTTCTGTGCTTGT</td>
<td>AGCGGGTCTACATTCCATT</td>
</tr>
</tbody>
</table>

Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistical parameters

When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main text, or Methods section).

<table>
<thead>
<tr>
<th>n/a</th>
<th>Confirmed</th>
</tr>
</thead>
</table>

- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided
- Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
- Give P values as exact values whenever suitable.
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated
- Clearly defined error bars
- State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code

Policy information about availability of computer code

Data collection: No specific software was used for data collection.

Data analysis: GraphPad PRISM 7.0 and Microsoft Excel were used for statistical data analysis.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

All data are available from the authors upon reasonable request.
Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

<table>
<thead>
<tr>
<th>Sample size</th>
<th>No statistical methods were used to predetermine sample size.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data exclusions</td>
<td>No data are excluded for analysis.</td>
</tr>
<tr>
<td>Replication</td>
<td>All experiment (except metabolic tracing and metabolic profiling, which were done once) were repeated at least 3 times with similar results. Both technical and biological replicates were reliably reproduced.</td>
</tr>
<tr>
<td>Randomization</td>
<td>For animal experiments, mice were randomized before treatment and allocated for treatment to avoid cage or tumor injection order effect. The other experiments were not randomized.</td>
</tr>
<tr>
<td>Blinding</td>
<td>The experiments were not blinded.</td>
</tr>
</tbody>
</table>

Reporting for specific materials, systems and methods

Materials & experimental systems

Methods

<table>
<thead>
<tr>
<th>n/a</th>
<th>Involved in the study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibodies</td>
<td></td>
</tr>
<tr>
<td>Eukaryotic cell lines</td>
<td></td>
</tr>
<tr>
<td>Palaeontology</td>
<td></td>
</tr>
<tr>
<td>Animals and other organisms</td>
<td></td>
</tr>
<tr>
<td>Human research participants</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antibodies used</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACH1 (Santa Cruz, sc-271211, Lot #E1418, 1:1000), PDK1 (C47H1) (Cell Signaling, #3820, Lot#12, 1:500), PDH (Cell Signaling, #2784, Lot#2, 1:1000), PDH [p-Ser293] (Novusbio, BB110-93479, Lot#B-1, 1:1000), ATP5D (Abcam, ab107077, Lot#GR75494-3, 1:500), SLC25A15 (Novusbio, NBP2-29387, Lot#0366, 1:500), UQCRCl (Abcam, ab118687, Lot#GR164879-7, 1:500), COX15 (Sigma, av46442-100UL, Lot# QC16365, 1:1000), NDUFA9 (Abcam, ab14713, Lot#GR289427-3), and alpha-Tubulin (Santa Cruz, sc-8035, Lot#K0816, 1:5000) for western blotting. For secondary antibodies for western, IRDye 800CW Goat anti-Mouse IgM (929-32280, Lot# C80402-15, 1:5000), IRDye 680RD Goat anti-Rabbit (Li-Cor, 926-68071, Lot#C80426-05, 1:5000), IRDye 800CW Goat anti-Mouse (Li-Cor, 926-32210, Lot#C80306-02, 1:5000), IRDye 680RD Goat anti-Mouse (Li-Cor, 926-68070, Lot#C70908-04, 1:5000), Anti-mouse IgG HRP (Sigma, A4416-1ML, Lot#041M6237, 1:5000) and Anti-Rabbit IgG HRP (Millipore AP187P, Lot#2920422, 1:5000). BACH1 (AF5776, R&D System; Santa Cruz, sc-271211), RNA Pol II phosphoSS (Abcam, ab5131), and IgG (normal mouse/goat/rabbit IgG, Santa Cruz, sc-2025/sc-3887/sc-2027) for ChIP assays.</td>
</tr>
</tbody>
</table>

Validation

Each antibody used in this work was validated for its use by manufacturers.

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s)

Human breast cancer cell lines (MDA-MB-436, MDA-MB-468) and nonmalignant mammary epithelial cells (MCF10A and 184A1) were obtained from ATCC, and BM1 cells were obtained from Dr. Andy Minn’s laboratory (University of Pennsylvania).

Authentication

Cell line authentification was validated by STR analysis.
Mycoplasma contamination

Mycoplasma detection was routinely performed to ensure cells are not infected with mycoplasma using MycoAlert Detection kit (Lonza, LT07-218).

Commonly misidentified lines

(See CELAC register)

N/A

Animals and other organisms

Policy information about studies involving animals. ARRIVE guidelines recommended for reporting animal research

Laboratory animals

Athymic nude and SCID BEIGE female mice with age of 4-6 weeks to generate xenograft tumors were purchased from Charles River Laboratory.

Wild animals

This study did not involve wild animals.

Field-collected samples

This study did not involve samples collected from the field.