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Computational approaches for
understanding energy metabolism
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There has been a surge of interest in understanding the regulation of metabolic
networks involved in disease in recent years. Quantitative models are increasingly
being used to interrogate the metabolic pathways that are contained within
this complex disease biology. At the core of this effort is the mathematical
modeling of central carbon metabolism involving glycolysis and the citric acid
cycle (referred to as energy metabolism). Here, we discuss several approaches
used to quantitatively model metabolic pathways relating to energy metabolism
and discuss their formalisms, successes, and limitations. © 2013 Wiley Periodicals, Inc.
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INTRODUCTION

The accumulated amount of biochemical work
carried out over the years has elaborated complex

metabolic systems and networks. This information
includes the network architecture encoded in chemical
reactions that are carried out by metabolic enzymes
and the kinetic parameters that determine reaction
mechanisms involved in each of these chemical
reactions. Application of this knowledge has led
to tremendous predictive capability in characterizing
metabolic regulation in normal physiology including
the growth of unicellular organisms and the successful
simulation of energy metabolism in healthy red
blood cells. However, there are far fewer instances
in which these models have been applied to the
characterization of pathophysiology. Applying our
knowledge of metabolic regulation to the investigation
of disease states such as cancer or neurodegeneration
is currently a scientific frontier. In this review, we will
revisit several classic techniques for the mathematical
modeling of metabolic pathways and discuss instances
where their application to biomedical science is
beginning to yield fruitful dividends.

∗Correspondence to: locasale@cornell.edu
1Division of Nutritional Sciences, Cornell University, Ithaca, NY,
USA
2Tri-Institutional Field of Computational Biology and Medicine,
Cornell University, Ithaca, NY, USA
Conflict of interest: The authors have declared no conflicts of
interest for this article.

LINEAR SYSTEMS: FLUX BALANCE
ANALYSIS

Linear models are mathematical models that contain a
set of algebraic equations based on the stoichiometric
relationships that define conservation relationships
within a metabolic network. Linear models, to our
knowledge, were first applied to biochemical systems
in 1961 by Shapiro.1 Shapiro discussed the possibility
of using optimization in biochemical linear models in
a 1969 publication.2 In 1984, a model incorporating
glycolysis and the tricarboxylic acid cycle (TCA)
cycle was employed running a variant of Dantzig’s
algorithm with the assumed biological objective of
minimized free energy dissipation.3,4 An enduring
research program was initiated by Palsson half a
decade later.5,6

An early work of Edwards and Palsson
showed that growth maximization in an Escherichia
coli model could correctly match 86% of 79
gene essentialities examined.7 Subsequent modeling
in Saccharomyces cerevisiae was able to closely
predict growth rates and exometabolic fluxes in
various media, and nearly capture the in vivo
phosphate/oxygen (P/O) ratio of 0.94 with a
simulated P/O value of 1.04, showing that models
of eukaryotes were also feasible.8 If one chooses the
biological objective function to reflect the appropriate
physiological demands, then it is possible to predict
features of adaptation; this was shown to be the case
for growth optimization in several E. coli mutants.9
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By this time it had become apparent that linear models
held much promise, particularly when coupled with
optimization.

Genome-Scale Modeling
Today, when we refer to linear models, we most
often mean constraint-based models (CBMs). We
refer to a CBM as any model making use of the
stoichiometric matrix, S, as a linear matrix constraint,
e.g., S * F = 0, where F is a flux vector. In fact,
this is a nearly universal constraint, as it guarantees
conservation of mass during steady-state processes
such as exponential growth or tissue maintenance.10

Other constraints commonly used include reversibility
constraints when the direction of a reaction is known
for physiological conditions of interest, bounds on the
uptake of nutrients or efflux rates due to regulation or
physiology, or bounds on enzyme reactions when the
maximum enzyme velocity Vmax is known.

Because these constraints give rise to an
underdetermined system, it will not be possible to
identify a unique solution for the flux vector. A unique
solution is often desirable as it allows investigators
to analyze a putative metabolic phenotype. Indeed,
this is one of the more convenient features of
linear optimization: the ability to get meaningful
solutions without explicitly taking into account any,
or at least very few, free parameters. Flux balance
analysis (FBA) assumes a linear combination of
fluxes to be maximized or minimized (Figure 1). In
microbes, perhaps the most popular FBA objective
has been growth maximization, which consists of
the biomass precursors and products formulated
as a single pseudo-reaction. Additionally, an ATP
maintenance constraint should be formulated as a
sink reaction with the molar ATP required to keep
1 g of dry weight biomass living for 1 h.11 This
empirically determined constraint, although assumed,
is less discussed, perhaps owing to its dependence
on individual strains and environments. We note
that for many expression-based methods in the CBM
framework, the ATP maintenance constraint is not
required (see Table 1 and Figure 2 for examples).
Fixed biomass objectives by themselves also have
some undesirable qualities; biomass composition
likely has some measure of variability based on
genetic background and environment. Robust FBA
attempts to address this problem by allowing some
variation in the biomass composition, as determined
by variation of empirical assays of biomass.12 Despite
these caveats, FBA has recently been found to not
only predict growth in microbes but also has good
agreement with gold standard 13C flux assays in vivo

when the growth objective is used along with ATP
synthesis maximization and minimization of absolute
fluxes.13

Minimization of absolute flux is a commonly
used objective employed alongside other objectives,
forming a minimax problem (i.e., finding the minimum
absolute flux profile among all flux profiles that
maximize biomass). This approximates the biological
goal of being efficient with enzyme production
costs and enzyme crowding constraints while also
guaranteeing that no thermodynamically impossible
loops are present, that is, ruling out some fluxes
that might otherwise violate Kirchoff’s loop rule.14,15

This constraint will work whenever a sink reaction,
such as growth, is being optimized. However,
maximizing an internal flux, as in flux variability
analysis,16 could still result in internal cycles.15

Initial thermodynamic approaches involved nonlinear
optimization.17–20 Constraints satisfying Kirchoff’s
loop rule were later developed that were faster and
more generally applicable than prior methods.15,21

Still, these involve integer constraints that put this
problem in a slower class of algorithms than the
convex minimized absolute flux problem. When
available, thermodynamic data is valuable; it can
not only be used to guarantee that there are no
internal cycles but can also aid in determining reaction
direction and potential regulatory targets.15,18,22,23

Application of this framework to concentration data
allows unmeasured metabolite concentrations to be
inferred and global concentrations to be resolved
at the organelle level.20 CBMs have also found
use in tracing individual atoms through pathways,
which provide a more appealing framework for
performing metabolic flux analysis (MFA; discussed
below) on stable isotope data owing to the lack of bias
compared with typical MFA models, which are often
an order of magnitude smaller than genome-scale
reconstructions.24 Recent insightful work has made it
possible to simplify the computational complexity of
loopless FBA to be nearly the same as conventional
FBA, but some mathematical difficulties must still be
overcome before bounds on exchange fluxes can be
suitably incorporated for genome-scale modeling.10,25

The metabolism of different tissues within the
same organism is diverse; whereas the metabolism in
liver is anabolic, neurons or red blood cells have
a much more limited catabolic regime.26–28 The
creation of tissue-specific models for multicellular
organisms has become an important problem, and
several automated algorithms taking as inputs tissue
expression data and a generic model for the organism
have been developed.28–30 Coupling multiple cellular
models together will enable multiscale modeling of
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(a)

(b)

(c)

FIGURE 1 | (a) A simple geometric illustration of a flux balance analysis (FBA) problem. Constant constraints on the Fi limit the feasible solution
to an n-dimensional cube (shown in gray). Further linear constraints from the S matrix create a cone of feasible solutions (blue). Linear programming
algorithms find an optimal solution on a vertex (illustrated with orange circle). (b and c) Depiction of a simple metabolic network with
compartmentalization and its associated stoichiometric matrix. The three compartments denoted with subscripts b, e, and c represent the boundary,
extracellular environment, and cytosol, respectively. The boundary is what separates the model from its environment, and mass balance is not
assumed at the boundary; this allows for the implementation of source and sink reactions.
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FIGURE 2 | Schematic representation of fluxomics tools. Important to fluxomics are both the mathematical and computational tools for
nonlabeled and labeled techniques, as well as the analytical methods used to obtain data and parameters. Metabolite concentrations and kinetic
parameters are obtained primarily from both gas chromatography- and liquid chromatography-mass spectrometry (GC-MS and LC-MS), nuclear
magnetic resonance (NMR), UV–vis spectroscopy, electrochemistry, Förster (fluorescence) resonance energy transfer (FRET), positron emission
tomography (PET), liquid scintillation counting (LSC), and classical enzymology. Sequence data is employed in the construction of organism models,
whereas proteomics and expression data find use in the creation of tissue- or cell-type-specific models. High-quality expression data such as RNA-seq
and ribosomal footprinting are beginning to find uses in flux prediction. Several prominent genome-scale techniques include flux balance analysis
(FBA), minimization of metabolic adjustment (MoMA), energy balance analysis (EBA), ExPas (extreme pathways), and elementary mode analysis
(EMA). Isotope-based approaches include stable isotope techniques (mostly convenient 13C MFA and other nuclei, namely 17O, 31P, 2H, and 15N used
to study central metabolism), hyperpolarized 13C [dynamic nuclear polarization (DNP)], and radioisotopes that are studied with PET and LSC.
Well-established MFA tools include isotopomer and positional modeling, which could be studied dynamically or at steady state (SS). With
hyperpolarized technique it is possible to extract energy-related fluxes like pyruvate dehydrogenase flux Fpdh, lactate production rate Flac, and
tricarboxylic acid flux Ftca (e.g., with [1- or 2-13C]Pyr as tracers). With other nuclei, the metabolic rate of oxygen consumption MRO2 and ATP
production MRATP and amino acid (AA) fluxes could be accessed directly. Advanced isotopomer techniques include cumomer approach with
elementary metabolite units (EMU) and bonded cumomer frameworks designed to reduce the number of independent variables while retaining all
measurable isotopomer information. Nonlabeled techniques along with genome-scale analysis include biochemical kinetics modeling tools to study
metabolic and signaling networks and their regulation architecture with established tools like metabolic control analysis (MCA) and global sensitivity
analysis (GSA). Additional sensitivity analysis should be conducted, e.g., with Monte-Carlo techniques like Markov chain Monte-Carlo (MCMC,
Bayesian) analysis to check the reliability of extracted metabolic parameters, including fluxes.

tissues in multicellular models or entire ecosystems
for microbes.26,31–33

Automated generation of metabolic networks
from genome sequence and pathway databases,
especially in prokaryotes, has been developed.34–37

This will offer many advantages to modelers: a starting
point for curated models (a draft reconstruction

is estimated to often take several months even
in prokaryotes), a means for doing population or
ecological simulations,33 and personalized genomic
modeling for patients with metabolic syndromes
such as cancer where both the patient and
possibly the disease have diverse genotypes.38,39

Eukaryotic models are somewhat more difficult

738 © 2013 Wiley Per iodica ls, Inc. Volume 5, November/December 2013
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to generate owing to the necessity of protein
localization and metabolite transporter information.34

Automatic reconstruction going beyond enzymatic
gene information, such as regulatory FBA (rFBA)
models, should also be possible;40,41 the automated
generation of Boolean and higher order discrete
regulatory models using time-series expression data
has been explored as well, although to date these
regulatory models have not been coupled to metabolic
reconstructions.42–45 These approaches and other
families of genome-scale methods are discussed in
Table 1.

Several approaches have been used in applying
CBMs to cancer and the Warburg effect, the preference
for glycolytic ATP production over glucose-derived
mitochondrial ATP production in cancer cells.54–56

An important study working with a simplified
model of central carbon metabolism showed that,
while the TCA cycle predicts better ATP yield than
glycolysis when only available glucose is considered
as a constraint, the addition of enzyme solvent-
capacity constraints creates a preference for ATP
synthesis through glycolysis.56 More recently, the
work of Vazquez and Oltvai was extended to
include a genome-scale model along with enzyme
solvent-capacity constraints, which was able to show
significant correlations between fluxes and expression
in the NCI-60 cell line panel, as well as predicting
an intermediate state in cancer metabolism transition
exhibiting a temporary increase in OxPhos that was
supported by two prior experimental observations.55

Each of these approaches correctly predicted lactate
production. Concurrent research on predicting cancer
targets was carried out by screening for simulated
negative epistasis in cancer tissue-specific models
that have at least one known-drug target and no
known effect on normal tissue revealed many epistatic
interactions.39 A related study confirmed one of
these synthetic lethalities between heme oxygenase
and fumarate hydratase, a mutation found in certain
kidney cancers.57 The recent publication of Human
Recon 2 promises to aid in the understanding of
many human diseases; already 65 cell-type-specific
models based on it are available, and the model reports
77% accuracy in identifying metabolic markers across
49 inborn errors of metabolism.58 Although this
model is a great step forward in consolidating much
of the knowledge about human metabolism, it is
only one of many steps to come. For instance, this
model is still primarily only amenable to steady-state
approaches, lacks corresponding enzyme-regulatory
and signaling architecture, and has introduced
more dead-end metabolites than it removed (1176
vs 339).

Conclusions
Kinetic models for smaller pathways are possible when
the data are present, but many energetic questions
concern the entire cell, leaving only incorporation of
CBMs as a viable option. The original efficiency and
ease of use of FBA have helped propagate a field
of more diverse algorithms that are often tractable
on today’s computers using the same modeling and
software frameworks.59,60 Numerous methods and
successful applications in energy metabolism exist,
including prevalent diseases such as heart disease,
cancer, and Alzheimer’s.61

Multiscale models, as were used in the
Alzheimer’s models, will undoubtedly become more
common. At the intracellular scale, CBMs are also
beginning to incorporate information other than
metabolic stoichiometry.62–64 A whole-cell model for
Mycoplasma genitalium incorporating information
about all classes of macromolecular synthesis
and degradation, in addition to stoichiometric
and regulatory information, found a nonstochastic
coupling between metabolism and the cell cycle where
DNA replication rates depended on the concentration
of dNTP.63 Models like these are not easy to build,
but substantial endeavors are underway to assist in
their draft construction and refinement, and together
with an increase in use of jamboree meetings of
organism and model experts and online collaborative
tools, and will likely aid in creating public models
of higher quality and the understanding of many
biological processes outside the traditional scope of
metabolism.35,58,65–69

BIOCHEMICAL KINETIC MODELING

Biochemical kinetic models describe dynamic proper-
ties of metabolic and signaling networks, predicting
a variety of different properties, e.g., fluxes, metabo-
lite concentrations or complex dynamic behavior with
multiple steady states, oscillations, and bifurcations70

(Figure 2). These kinetic models form mechanistic
descriptions of metabolic networks and are able not
only to predict effects of environmental stresses or
genomic changes but also allow for the investigation
of network robustness and design principles. To gener-
ate such a model, kinetic parameters must be included
in the model explicitly. In practice, this requirement
makes such models substantially underdetermined. As
a result, extensive parameter sensitivity evaluations
are required for all model calculations. In this section,
we discuss the basic formalism of kinetic models.
Because of space limitations we do not consider here
some important strategies such as parameter estima-
tion, model validation, and other types of analysis of
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network models and instead we refer to approaches
reviewed recently.71,72

Kinetic Models of Metabolic Networks
To construct kinetic models, several types of data are
required. A component of all metabolic networks
is stoichiometry and this was discussed above
(stoichiometric matrix S: see also FBA part, Eq. (1)).

dM
dt

= S ∗ F
(
M, p

)
, (1)

where S is the stoichiometry matrix, M and F are the
concentration and flux vectors, and p is the parameter
vector.

Presently, metabolic pathway charts are known
for many organisms and tissues and there are several
databases containing this information, e.g., KEGG
metabolic pathways database (see Box 1). Construc-
tion of models requires the use of mechanistic enzyme
flux equations and their reaction laws. The reaction
rate (F, Eq. (1)) depends on the concentration of
metabolites and kinetic/thermodynamic parameters:
Vmax, the maximum activity of the enzyme, turnover
rates, Michaelis–Menten constants, effector constants,
and others. There is a lot of literature available for
enzyme kinetics.73,74 A limiting factor in construction
of complex dynamic models is the lack of knowledge
of kinetic mechanisms and the difficulty in experi-
mental identification of parameters. So, the common
strategy in computational biology is to reduce the
number of unknown parameters and consequently
to use simplified or generic rate equations.75,76

Another alternative modeling approach, hybrid
dynamic modeling, combines detailed mechanistic
kinetics for regulatory enzymes with simplified rate
equations with a small number of parameters for
the remaining reactions.77,78 To check the reliability
of this approach, Bulik et al.78 have applied it to
two independent metabolic networks including one
involving energy and redox metabolism of red blood
cells. Calculations of stationary and temporary states
under various physiological challenges demonstrate
the good performance of the hybrid models.

Constructions of dynamic models with multi-
level hierarchical networks that include the integration
of multiple biological processes including metabolism,
signal transduction, genetic regulation,87 and even liv-
ing whole cell63 have also been carried out.

All enzyme-catalyzed reactions are reversible
in principle and thermodynamic constraints have to
be captured in kinetic modeling. There are several
thermodynamic databases for enzymatic reactions
available (see Box 1). Several databases have been

developed for enzyme kinetic data such as BRENDA
and SABIO-RK (see Box 1). In 2004, the STRENDA
(STandards for Reporting Enzymology DAta)—a
Commission of Beilstein-Institut in Germany, was
setup to develop standardization of enzyme data. The
STRENDA commission is accompanied by ESCEC
(Experimental Standard Conditions of Enzyme
Characterizations) conferences where the latest in
enzymology and systems biology is presented. Other
databases are also described in Box 1.

BOX 1

ONLINE RESOURCES FOR KINETIC
MODELING

Enzymes, Pathways, and Metabolites
KEGG (Kyoto Encyclopedia of Genes and

Genomes): Comprehensive metabolic pathways
database dealing with genes, protein, metabo-
lites, and pathways (http://www.genome.jp/
kegg/)

BRENDA (BRaunschweigENzymeDAtabase):
Extensive enzyme database79 (http://www.
brenda-enzymes.org/)

SABIO-RK (System for the Analysis of
BIOchemicalpathways-Reaction Kinetics): Exten-
sion of SABIO biopathway database developed
for biochemical reaction kinetics80 (http://sabio.
h-its.org/)

STRENDA: Standards for Reporting Enzy-
mology Data (http://www.beilstein-institut.
de/en/ projects/strenda/

GTD: The Thermodynamics of Enzyme-
Catalyzed Reactions database, the National Insti-
tute of Standards and Technology (NIST, USA)81

(http://xpdb.nist.gov/enzyme_thermodynamics/)
ExplorEnz: A database of the IUBMB

enzyme list82 (http://www.enzyme-database.org/
index.php)

ExPASy: Enzyme nomenclature database
(http://enzyme.expasy.org/)

MetaCyc: A database of experimentally elu-
cidated metabolic pathways83 (http://metacyc.
org/)

HMDB: The Human Metabolome Data
Base—contains detailed information about
small-molecule metabolites found in the human
body84 (http://www.hmdb.ca/)
Metabolic Modeling

SBML (Systems Biology Markup Language).
A biomodels database for storing computational
models of bioprocesses (http://sbml.org/Main_
Page)
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GEPASI: Popular software package for
kinetic metabolic analysis85 (http://www.gepasi.
org/gepasi.html)

Cellware: Modeling tool for cellular trans-
actions (http://www.bii.a-star.edu.sg/ achieve-
ments/applications/cellware/index.php)

BISEN: Biochemical Simulation Environ-
ment—set of tools for generating equations for
simulating biochemical systems in the Matlab
(bbc.mcw.edu/BISEN)86

COPASY : A software for simulation and
analysis of biochemical networks (http://www.
copasi.org/tiki-view_articles.php)

DIZZY : Chemical kinetics stochastic simu-
lation software (http://systems-biology.org/ soft-
ware/simulation/dizzy.html)

Modeling of metabolic dynamics from the
cellular to organ level is a powerful tool for
interpreting experimental data. Recently, several
kinetic models at the organ level were developed to
study energy metabolism in brain,88–90 muscle,75,76

and heart.91,92 These modeling approaches allow
for the evaluation of the relative significance of
metabolic pathways and regulatory mechanisms,
and the prediction of responses to environmental
stimuli that cannot be directly measured such as the
introduction of a drug. These models are also being
applied to bioenergetics of diseases such as Parkinson’s
desease.93

Sensitivity Analysis and Metabolic Control
Mechanism-based models predict dynamics in a spec-
ified system for each set of determined system param-
eters. However, it is important to further investigate
the effect of parameter perturbations on the overall
system. Identification of network control points,
robustness, and parameter sensitivities is most crucial
to the prediction of the system output behavior. Local
parameter sensitivity analysis has been used to identify
critical parameters in dynamic models of, e.g., muscle
energetics76 and excitable cell ATP dynamics.94 The
local sensitivity coefficient is defined as:

SR
p =

(
∂R/R
∂p/p

)
ss

,

where p represents the parameter that is varied, R is a
response of the system output such as a concentration
or flux, and subscript ss means differentiation at
steady state. Local sensitivity analysis allows only
one parameter to vary for each calculation, deals

with small perturbations, and is most widely used in
metabolic systems.70 However, parameters can vary
extensively, and for this reason it is more appropriate
to explore the possibility of nonlinear effects
from simultaneous variations of arbitrary magnitude
by means of global parameter sensitivity analysis
(GSA).71,95 GSA has the advantage that it allows for
a more comprehensive analysis by applying a Monte-
Carlo strategy to sample distributions of random
parameters.95 For each parameter set the sensitivity
indices are calculated by minimization of an objective
function, defined as a sum of squared errors between
perturbed and reference or experimental output.95

Metabolic control analysis (MCA) is a form
of sensitivity analysis that is used in metabolic
engineering. MCA computes the extent to which
an enzyme controls a flux or concentration in the
network. Control coefficients describe the relative
sensitivities of dependent variables to independent
system parameters. MCA helps to elucidate the
distribution of concentration and flux control
coefficients (FCCs). This approach was developed
independently by two groups in the seventies.96,97

In particular, control coefficients describe the change
in system variables as a result of perturbation
of particular enzyme concentrations (independent
parameter). The magnitude of change in pathway
flux in response to enzyme concentration change is
expressed as the FCC97

CF
Ei

=
(

∂F/F
∂Ei/Ei

)
ss

=
(

∂ ln F
∂ ln Ei

)
ss

, (2)

where CF
Ei

is the FCC of the ith enzyme, F is the
steady-state flux, Ei is the activity of ith enzyme,
and the subscript ss means differentiation at the new
steady-state condition. One feature of MCA is that
control properties result from log–log derivatives. As
a result, summation theorems state that, e.g., for FCC
the sum of all FCCs in the metabolic network is equal
to 1.97

Although sensitivity analysis is widely used in
kinetic modeling, it is rarely used in genome-scale
modeling techniques such as FBA. This is despite
the fact that early publications discuss the notion of
shadow prices, which describe the rate of change in
the objective function with respect to a particular
flux, as well as prominent toolboxes featuring
implementations of MCMC sampling strategies.5,98

Conclusions
In summary, mechanism-based kinetic models, though
applied to limited bionetworks, provide a thorough
understanding of biological systems. To understand
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dynamic features of metabolic networks, parameter
fits are not necessary, especially when experimental
data is limited or not available. In these regards,
sensitivity analysis becomes a significant tool to study
dynamic flux control and has the potential to develop
models that possess prognostic power.71

STABLE ISOTOPE TRACING AND MFA

MFA employs stable isotope tracing and aims to
characterize fluxes based on the distribution of label-
ing patterns of heavy isotopes (most commonly 13C)
that are introduced into cells. MFA can yield novel
insight into the operation of biological systems, e.g.,
discovering features such as network mechanisms,
novel pathways, futile cycles (substrate cycling), or
alternative reactions. A large set of fluxes in a flux map
is described as a fluxome and was defined by Sauer
et al.99 as the array of fluxes for all the reactions in a
living system. The field of fluxomics aims to analyze
this set of fluxes99 (see Figure 2). In metabolome-wide
MFA the number of measurements from labeling
experiments is usually much larger than the number
of fluxes to be determined. This makes flux estimation
an overdetermined problem in mathematical terms.
The challenges of modern MFA have provided the
motivation to develop additional theoretical frame-
works to study the fluxome. For example, the details
of flux analysis based on cumomers (see Boxes 2 and
3) are explained in series of articles.100–102 Alternative
methods such as elementary metabolite units103 and
bonded cumomers104 aim to minimize the number of
necessary state variables and to reduce computational
cost.105,106

BOX 2

GLOSSARY FOR MFA

Isotopomer (or sometimes refer as isotopo-
logue): ‘Isotopic’ molecule that represents one
possible labeled state of a given substrate and
so differing in position of isotopes. For metabo-
lite M with n different carbon atoms there are
2n possible isotopomers (if labeled with two
isotopes, e.g., 12C or 13C isotopes). Particular iso-
topomer M(i1, i2 . . . in) is the isotopomer with
labeled atoms in i1, i2 positions. For example,
the Glu(1,2) isotopomer of glutamate is labeled
with its first and second carbon atoms and all
other atoms are unlabeled.

Mass isotopomer: A set of isotopomers
with the same mass. For instance, the mass-
isotopomer alanine M + 2 (AlaM2) contains all

isotopomers with two labeled atoms. A molecule
with n carbon atoms has n + 1 mass isotopomers.

Cumomer: The set of isotopomers of
metabolite M that contain a particular labeled
fragment,100 thus representing a ‘virtual’ iso-
topic molecule. Cumomer M[i1, i2 . . . ik] is the
set of isotopomers with labeled i1, i2 . . . ik atoms.
For example, Lac[1,2] cumomer of lactate with
labeled first and second atoms and the third
atom is either labeled or unlabeled. Total num-
ber of cumomers for molecule with n different
carbon atoms equals to total number of iso-
topomers, 2n.

Bonded cumomer: Cumomer whose indices
refer to adjacent carbons.104 Lac[1,2]-bonded
cumomer and Lac[1,3] nonbonded.

Flux (F): Rate of reaction, expressed,
e.g., in mkmol/g/min. Reflect in vivo enzymes
activity and pathways rate. Flux information is
important for mechanistic metabolic and disease
pathophysiology studies.

Net flux: Difference between reaction
forward and backward fluxes Ff − Fb.

Exchange flux (Fe): Often referred as a
minimal flux between forward or backward
fluxes, usually when Ff ≥ Fb, Fe = Fb (see above).

Fluxome: Set of fluxes for the reactions in
organism network. The term was introduced by
Sauer et al. in 1999.99

Fluxomics: The discipline that applies
different computational methods to analyze
fluxome.

FBA family: Steady-state analysis of fluxes,
based, e.g., on measured input and output
(transport) fluxes or whole gene, protein
expression, and linear programming.

MFA: Steady-state or dynamic analysis of
fluxes based on the network stoichiometry and
on the redistribution of labeled patterns of
metabolites.

These fluxomics methods are classified as
dynamic or static (steady state) depending on
the manner of measurement of labeled metabolite
patterns. Isotope-based MFA has been applied
successfully to complex bionetworks with metabolic
cycles, subcellular compartmentalization, reaction
reversibility, and futile substrate cycling. Recently,
MFA has become a widely used tool. The general
methodology for both isotopically steady state
and dynamic approaches for 13C MFA and 13C
metabolic modeling has been reviewed recently, with
applications to mammalian physiological systems
(e.g., brain),114,116–119 microbial fluxome,120,121 and
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plants.122 Some important problems in MFA including
its methodology, flux error analysis, and model
validation are discussed elsewere.116,123

BOX 3

ONLINE RESOURCES FOR 13C MFA AND
FBA

OpenFLUX: Software for 13C-based MFA107

13CFLUX: Software package for analyz-
ing steady-state 13C labeling experiments;
runs under Linux108 (https://www.13cflux.net/
13cflux/)

iMS2Flux: MS data processing tool for
isotope labeling experiments focusing on
increasing throughput at multiple stages of the
data analysis109 (http://sourceforge.net/projects/
ims2flux/)

13CFLUX2: The new high-performance
software suite for 13C-MFA; runs under Linux110

(http://www.13cflux.net/13cflux2/)
FiatFlux: A software for MFA from 13C-

glucose experiments111

ETA: Extracellular time-course analysis,
MATLAB-based software for determination
of cell-specific rates from extracellular time
courses.112

NMR2Flux: Software tool developed for
plant metabolism based on two-dimensional
NMR spectra113

CWave: Software package designed for
dynamic 13C MFA with positional enrichments
based on in vivo NMR data.114

COBRA Toolbox: Open-source MATLAB
and Python packages for use with genome-scale
models, which includes implementations
of many of the linear and constraint-
based algorithms discussed in this review98

(http://opencobra.sourceforge.net/openCOBRA/
Welcome.html)

BioMet: Web-based toolbox for stoichio-
metric analysis provides the capabilities of
genome-wide analysis of metabolism115 (www.
sysbio.se/BioMet/)

In Silico Organisms: A well-maintained
list of curated genome-scale reconstructions
and models (http://gcrg.ucsd.edu/ InSilicoOrgan-
isms/OtherOrganisms)

COBRA Methods: A fairly comprehen-
sive list of genome-scale methods (http://
cobramethods.wikidot.com/methods)

MFA currently represents one of the most
powerful fluxomics techniques to estimate network

fluxes, allowing estimation of both net and
exchange fluxes within multicellular and subcellular
compartments (Figure 2). MFA differs from FBA
by incorporating the data from experiments using
isotope-labeled nutrients (i.e., a tracer) into a
metabolic model, and in general is a nonlinear
problem. Tracers are supplied continuously to a
biological system at metabolic steady state and
labeling patterns of downstream metabolites are
analyzed. However, it is possible to feed tissue or cells
with a limited quantity of label, e.g., with a bolus or
pulse, and this infusion technique is relatively common
in physiological in vivo temporal studies.114 The
propagation of labels through a network depends on
the network’s structure, activity of network enzymes
(fluxes), and pool sizes; larger pools slow down
propagation and higher fluxes accelerate it.116

Isotopic enrichments or patterns in metabolites
are usually measured by mass spectrometry (MS)
coupled with liquid chromatography (LC), gas
chromatography (GC) and NMR. The isotopes most
often used to study bioenergetics are 31P (e.g., brain
ATP rate analyzed by NMR),124,125 17O (e.g., cerebral
oxygen metabolism by NMR),125,126 18O (whole-body
energy balance by MS),127 2H (e.g., lactate recycling
by NMR),128 and most commonly 13C (see above,
NMR and MS). The ability to use NMR spectroscopy
to study energy metabolism was demonstrated for
31P129 and for 13C130,131 using suspension cultures of
microorganisms. Thereafter, seminal in vivo kinetics
studies of energy metabolism have been made with
13C in perfused heart132,133 and liver,134–136 and
noninvasively in brain137,138 and skeletal muscle139,140

using different models.
Technological advances in NMR and MS

have led to advances in metabolomics.141 In paral-
lel, analytical techniques for 13C MFA have been
developed—from relatively simple to complex mul-
ticompartmental models with extended bionetworks
represented by large numbers of equations. These
models were able to demonstrate that human brain
energy metabolism has not only a neuronal but also
glial component, and have further shown that in
glia, TCA cycle and anaplerotic pyruvate carboxy-
lase activity are significant,142 and that neuronal TCA
cycle activity increases during visual stimulation143

and decreases during normal aging, leading to a neu-
ronal loss of oxidative capacity.144

Both NMR and MS are capable of measuring
label distribution in glycolysis and TCA cycle-
associated intermediates. High-resolution LC-MS
methods allow for the assessment of all mass
isotopomers (n + 1 in total for a metabolite with n
carbon atoms, Box 2) of glycolytic and TCA cycle
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intermediates, many of which are not detectable by
NMR owing to low sensitivity. However, NMR
gives more specific information about metabolites’
positional enrichments via its analysis of 13C multiplet
spectra (e.g., Glu4-glutamate labeled at C4 position
and other amino acids associated with TCA cycle
glutamine and aspartate). Still, even this technique is
not able to quantify all possible molecules that differ
only in their isotope distribution (i.e., isotopomers,
see Box 2) (=2n for a molecule with n different
carbon atoms) with one exception.145 Therefore,
the combination of both methods could potentially
give more valuable metabolic information about
bionetworks and better precision for calculated fluxes.

High sensitivity could favor the use of radioiso-
topes [analyzed by liquid scintillation counting and/or
positron emission tomography (PET)] and 13C hyper-
polarized compounds for flux studies. They are par-
ticularly convenient if there is no need for positional
labeling information. An interesting use of 11C iso-
tope with PET and a mathematical model to study
neuroenergetics was recently published.146

Detailed mathematical models are required for
the correct interpretation of experimental data and to
analyze isotopic patterns to calculate in vivo fluxes.
Metabolic models differ depending on isotopic speci-
ficity of the input data, but three families can be distin-
guished: positional models, mass-isotopomer models,
and isotopomer models (see Figure 2). Most metabolic
labeled experiments are limited to measurement of
positional fractional enrichments of metabolites (in
the case of 13C NMR, the yield is at most n indepen-
dent variables for a metabolite with n asymmetrical
carbon atoms) and to only one or few mass iso-
topomers from all MS data (n + 1 mass isotopomers).
As a consequence, there has been no complete descrip-
tion of isotopomer distribution dynamics, resulting
in the loss of a lot of mechanistic biochemical infor-
mation and the reliable determination of metabolic
parameters. The main targets of modern isotopomer
modeling approaches relate to the accurate determi-
nation of metabolic fluxes, improving their reliability
and providing maximal metabolic information that
can be derived from the fine structure of 13C NMR
spectroscopy of metabolites and/or metabolome-scale
13C mass-isotopomer distributions (Box 3)

CONCLUSIONS

Various approaches for MFA have been employed
recently, with the most advanced being cumomer
modeling. Despite these advances in the theoretical
basis for MFA, it is still an expanding and very active
research field. Further progress will combine different

analytical and experimental techniques, e.g., MS and
NMR data with advanced dynamic and steady-state
MFA techniques capable of handling heterogeneous
data.

There is a significant value for MFA in many
biomedical fields. High-performance ‘omics’ tools
expand the application of flux analysis further to
understand in vivo metabolism and its mechanisms
and regulation under different conditions, elucidating
the pathological mechanism of diseases, providing
information on bottleneck reactions, and identifying
specific steps for drug targets. Moreover, by providing
information on flux in individual cells and tissues,
MFA can significantly expand the potential of ‘omics’
techniques.

SUMMARY

Fluxes through metabolism directly report in
vivo enzyme reaction rates. To comprehensively
understand metabolism and elucidate its regulation
all three flux modeling approaches should be applied.
Each of these modeling approaches (linear modeling,
kinetic modeling, and MFA) has successes and
limitations. There have been a variety of successes
in modeling energy metabolism with steady-state
techniques, from the better understanding of diseases
as diverse as Alzheimer’s disease and host–pathogen
diseases to predicting treatments for cancer. Despite
such amazing successes, it must be cautioned that
these models are far from perfect; 77% of metabolic
biomarkers for inborn errors in metabolism can
be predicted with correct directionality with the
recently published Human Recon 2, and while a great
achievement, still leaves much room for improvement.
The yeast models, which have also shown much
promise in predicting many phenotypes, have difficulty
when predicting effects requiring greater precision,
such as epistasis. Undoubtedly, this is largely due to the
incompleteness of the reconstructions themselves. For
several of the more popular model organisms, iterative
improvements of reconstruction releases remain an
active area of research. Other model organisms,
such as Drosophila melanogaster, a model organism
often used for studying mitochondrial defects, do
not yet possess even a draft reconstruction. The
parallel advances in modeling techniques enable
the reconstructions to serve a dually important
role as mathematically and experimentally verified
databases; errors can easily be found by computational
procedures, showing us where more experiments are
needed to fill the gaps.

A limitation of linear models themselves is their
inability to simulate dynamics. But, this is a somewhat
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artificial constraint, as integrated techniques utilizing
the same reconstructions have proven to be successful.
Increasingly, integrated techniques and diverse types
of data underlying organism or cellular modeling will
also play a vital role in improving predictive capability
and a systematic knowledge base for biology. When
trying to study individual or small sets of pathways,
kinetic models may be relatively easy to implement
if data is available, and data is rapidly becoming
easier to generate with advances in mass spectrometry.

However, for many investigators, these methods
may be neither easy to implement nor affordable
to generate. Genome-scale models can cover more
genes, with typically faster simulation times, making
them particularly attractive to course-drained drug
prediction or genetic interaction studies. In both cases,
accuracy largely depends on the assumptions made by
the user. Just because genome-scale methods such as
FBA can be accurate and easy to run, does not mean
a naive attempt will provide valuable predictions.
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41. Herrgård MJ, Lee B-S, Portnoy V, Palsson BØ.
Integrated analysis of regulatory and metabolic
networks reveals novel regulatory mechanisms
in Saccharomyces cerevisiae. Genome Res 2006,
16:627–635.

42. Dingel J, Milenkovic O. List-decoding methods for
inferring polynomials in finite dynamical gene network
models. Bioinformatics 2009, 25:1686–1693.

43. Dimitrova E, Garcia-Puente LD, Hinkelmann F, Jarah
AS, Laubenbacher R, Stigler B, Stillman M, Vera-
Licona P. Parameter estimation for Boolean models
of biological networks. Theor Comput Sci 2011,
412:2816–2826.

44. Stigler B, Jarrah A, Stillman M, Laubenbacher R.
Reverse engineering of dynamic networks. Ann N Y
Acad Sci 2007, 1115:168–177.

45. Jarrah AS, Laubenbacher R, Stigler B, Stillman M.
Reverse-engineering of polynomial dynamical systems.
Adv Appl Math 2007, 39:477–489.

46. Shlomi T, Berkman O, Ruppin E. Regulatory on/off
minimization of metabolic flux. Proc Natl Acad Sci
U S A 2005, 102:7695–7700.
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K. In vivo 13C NMR spectroscopy and metabolic
modeling in the brain: a practical perspective. Magn
Reson Imaging 2006, 24:527–539.

117. Henry PHenry PG, Deelchand DK, Iltis I, Marjanska
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