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Nutrition and metabolism are fundamental to cellular func-
tion. Metabolic activity (i.e. rates of flow, most commonly
referred to as flux) is constrained by thermodynamics and reg-
ulated by the activity of enzymes. The general principles that
relate biological and physical variables to metabolic control are
incompletely understood. Using metabolic control analysis and
computer simulations in several models of simplified metabolic
pathways, we derive analytical expressions that define relation-
ships between thermodynamics, enzyme activity, and flux con-
trol. The relationships are further analyzed in a mathematical
model of glycolysis as an example of a complex biochemical
pathway. We show that metabolic pathways that are very far
from equilibrium are controlled by the activity of upstream
enzymes. However, in general, regulation of metabolic fluxes by
an enzyme has a more adaptable pattern, which relies more on
distribution of free energy among reaction steps in the pathway
than on the thermodynamic properties of the given enzyme.
These findings show how the control of metabolic pathways is
shaped by thermodynamic constraints of the given pathway.

Metabolism enables the utilization of nutritional resources
to provide free energy, material, and cellular communication
for functions of cells (1). Some metabolic pathways such as
central carbon metabolism, which processes macronutrients or
the major caloric sources in diet (proteins, fats, and carbohy-
drates), have been largely defined for over 50 years (2), and
even genome-scale reconstructions of metabolic networks that
include thousands of metabolites and reactions in different
intracellular compartments are available in many unicellular
organisms and metazoans (3-5). Despite the complexity of
metabolic networks in living organisms, metabolic processes
still follow the laws of thermodynamics. It is thus important to
understand the principles that link fundamental thermody-
namic quantities to the control of metabolic pathway activity
(i.e. the rates of flow of materials through the network, most
commonly referred to as fluxes).
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Analytical frameworks have been developed to understand
steady-state and dynamic behaviors of metabolic networks.
The most widely applied method in computational modeling of
metabolism is flux balance analysis, which assumes that the
network is in steady state and that configurations of metabolic
fluxes are determined by optimizing an objective function such
as growth rate (6). This approach does not require that enzyme
properties such as expression levels be known, but the utility
of the method depends on the objective function and other
assumptions such as nutrient uptake rates. Moreover, flux bal-
ance analysis does not provide information about pathway reg-
ulation and the control of metabolic flux, which requires addi-
tional knowledge such as enzyme activities or metabolite
abundances, which are routinely measurable (7, 8).

Another framework for understanding metabolism is meta-
bolic control analysis (MCA),? originally developed in the 1970s
once the biochemistry for many of the key pathways in metab-
olism such as glycolysis and the tricarboxylic acid cycle was
established (9-15). MCA quantitatively measures how the flow
through a metabolic pathway responds to changes in parame-
ters such as the abundance of an enzyme or availability of a
nutrient. MCA defines the sensitivity of a metabolic flux to a
perturbation in a given metabolic reaction (i.e. the flux control
coefficients (FCCs)) and also provides a series of rigorously
derived relationships between metabolic fluxes, metabolite
concentrations, and enzyme activities. This framework can also
be applied in computer simulations (16 —19) or in experimen-
tation (20, 21) when some but not all of the relevant variables
are measured (22-25).

Metabolism is subject to the laws of thermodynamics. These
laws place constraints on the dynamics of metabolic reactions
(26 -32) and are known to affect the control of fluxes in linear
pathways (9, 31, 33, 34). Moreover, the deviation from equilib-
rium at an individual reaction step has been applied as the cri-
terion to identify rate-limiting steps in metabolic pathways (2,
29). However, this rule of thumb has been challenged by MCA,
at least for linear pathways (9), but a quantitative evaluation of
the relationship between thermodynamics and flux control in
metabolic pathways with different topologies such as the con-
trol at branching points is still lacking.

In this study, we use a set of models with representative top-
ological structures observed in metabolism to investigate the
quantitative relationships between thermodynamics and regu-
lation of metabolic fluxes. Notably, all models are based on

3 The abbreviations used are: MCA, metabolic control analysis; FCC, flux con-
trol coefficient; TDF, thermodynamic driving force.
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Kinetics: v = k(S - E)
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Gibbs free AG = RT In—
energy: KS

Figure 1. First-order kinetics of enzyme-catalyzed reversible reactions.
A, forward and backward fluxes of a reversible reaction. S is the concentration
of substrate, P is the concentration of product, v, is the rate of the forward
reaction, v_ is the rate of the backward reaction, k_ is the rate constant of the
forward reaction, and k_ is the rate constant of the backward reaction. B, net
flux and Gibbs free energy change of a reversible reaction. vis the net reaction
rate, k is the rate constant, K is the equilibrium constant, AG is the reaction
Gibbs free energy change, R is the universal gas constant, and T is the tem-
perature. Other variables are the same as in A.

some simplifying assumptions, but some (and hopefully these)
are useful. To our surprise, we find that, in both linear and
branched pathways, the regulation of pathway fluxes by indi-
vidual enzymes is in general loosely constrained by the devia-
tion from thermodynamic equilibrium, or the thermodynamic
driving force, of the whole pathway. Only pathways very far
from equilibrium have their flux regulation strictly constrained
by the thermodynamic driving force, in which all fluxes are
almost fully controlled by the upstream enzymes. The relation-
ships are further studied in a mathematical model of glycolysis
as an example of a more complicated metabolic model. These
results unravel simple principles of how metabolic pathways
are regulated by the interaction between thermodynamics and
enzyme activity.

Results
Metabolic flux and thermodynamics

We first consider unimolecular, first-order kinetics of revers-
ible metabolic reactions for simplicity. In this framework, each
reaction has one substrate (S) and one product (P) (Fig. 1). It is
noteworthy that this simplified case approximates the more
complicated Michaelis—Menten mechanism when the abun-
dance of substrate is far below the K. The forward reaction
rate v, = k, S and backward reaction rate v_ = k_P are linear
in substrate and product concentrations. Because the rate con-
stants of the forward and backward reactions are coupled by the
equilibrium constant K:K = k_ /k_, the net flux carried by this
reactionisas follows:v=v, —v_ =k (S — P/K).Letk =k, for
simplicity, and we have the following.

s

The equilibrium constant K can be further connected to the
standard Gibbs free energy of this reaction.

(Eq.1.1)

AG®° = —RTInK (Eq.1.2)
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Finally, the Gibbs free energy is determined by the standard
Gibbs free energy in combination with concentrations of the
substrate and product.

P P
AG = AG° + RTIng = RTIn (Eq.1.3)

KS

We note that Equation 1.1 can also be rewritten to explicitly
incorporate the reaction free energy change. Here, we let g =
AG/RT for simplicity. Thus, we have the following.

kP

v =kS(1 —e9)=?(e‘9—1) (Eq.1.4)

According to the connectivity theorem in MCA (13), flux
control coefficients of reactions directly associated with a
metabolite are coupled through local elasticity coefficients of
these reactions with respect to the metabolite. For a reaction
and a metabolite directly associated with this reaction (either as
substrate or as product), the elasticity coefficient is defined as
the partial derivative of the reaction rate with respect to the
concentration of the metabolite on the logarithmic scale. The
elasticity coefficients can be computed from Equations 1.1 and
1.4.

_Sv_ S 1

& - =
 vaos g_ P 1-¢
(EQ. 1.5)

" yoP P-KS 1-¢*

Linear pathways

Based on the definitions under “Metabolic flux and thermo-
dynamics,” we now consider a linear pathway consisting of #
reactions (Fig. 2A4). Each reaction has unimolecular, linear
kinetics, as described previously. The first substrate S, is con-
verted to the end product S, by this reaction chain in # steps
with # — 1 intermediary metabolites S;,..., S, _ ;. The ith
reaction in this chain has rate constant k; and equilibrium con-
stant K. The concentrations of S, and S, are treated as fixed
parameters, because these two values, together with rate con-
stants and equilibrium constants of the enzymes, determine
concentrations of all other metabolites.

Previous work has shown that in linear pathways with either
first-order or zero-order (i.e. substrate-saturated) kinetics, the
pattern of flux control can be completely determined if free
energies of all reactions involved in the pathway are known (34).
Here, we use these results as necessary background to study the
relationship between thermodynamics and flux control in met-
abolic networks with different topological structures. Briefly,
from MCA (13), there are analytical relationships between
thermodynamic properties and the flux control coefficients,
which quantify the relative importance of each enzyme in reg-
ulating the flux through the pathway.

To apply the summation theorem and connectivity theorems
in the theory of metabolic control analysis, we assume that the
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Figure 2. Thermodynamics and flux regulation in a linear pathway. A, diagram of a linear pathway and related parameters. S, is the input substrate, S,
is the final product, S; is the ith intermediary metabolite, k; is the rate constant of the ith reaction, K; is the equilibrium constant of the ith reaction, and Jis the
pathway flux. B, scatter plots comparing flux control coefficients and reaction free energy changes in a linear pathway with randomly sampled parameters. The
pathway includes 10 reaction steps. CJ; is the ith flux control coefficient, and g; = AG/RT quantifies the ith free energy change. C, scatter plots comparing flux
control coefficients and the thermodynamic driving force (max{g}) in a linear pathway with randomly sampled parameters. Variables are the same as in B. D,
relationship between free energy of a reaction and the elasticity coefficient of its velocity toward the substrate. E, relationship between free energy of a reaction
and the elasticity coefficient of its velocity toward the product. F, relationship between the free energies of two sequential reactions and the ratio of the flux

control coefficients associated with the two reactions.

pathway is in steady state, in which all reactions have identical
net flux. In other words, all intermediary metabolites have bal-
anced fluxes feeding and consuming them. Thus, we can write
n — 1 equations for the steady-state constraints.

S\ _ s S
ko) “klS Tk

Let / denote the net flux through this pathway. The flux con-
trol coefficient, C/,, quantifies the sensitivity of the pathway flux
J to perturbation in activity (i.e. rate constant) of the ith reac-
tion. It is defined as the ratio of relative change in the flux J to
relative change in the rate of the ith reaction when an arbitrary
parameter p that only affects the rate of the ith reaction and no
other reactions has a small change.

ki—1<5i—2_ (Eq.2.1)

__ dlog J/dlog p
~ dlog v/dlog p

J
Vi

(Eq.2.2)

If p = k,, we have the following.

SASBMB

k[ aJ

y _ ol
G =k,

(Eq.2.3)

The flux control coefficients can be uniquely determined by
solving equations derived from the summation and connectiv-
ity theorems. For linear pathways, the summation and connec-
tivity theorems do not explicitly include the pathway flux /.

Summation theorem

%G, =1

(Eq.2.4)
i=1
Connectivity theorem
Ched  +C) €= (Eq.2.5)

According to Equation 1.5, we have the following.

J. Biol. Chem. (2018) 293(51) 1972519739 19727
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SH A
K,

Flux control coefficients can be solved by combining Equa-
tions 2.1, 2.4, 2.5, and 2.6 (see supporting information). They
can be written as either explicitly including only the reaction
free energy terms or explicitly including only the rate constants
and equilibrium constants.

1-e% 2

J _ Em
C", - n He

E (Eq. 2.7)
-1 e* ™!
I
C’ = L
i—1 n 1
k11K, - (Eq. 2.8)
I=1 I=1 kz Km

According to Equations 2.7 and 2.8, the flux control coeffi-
cients are completely determined by kinetic and thermody-
namic parameters of reactions in the pathway. Therefore, alter-
ations in concentrations of the input substrate and the final
product do not influence the flux control coefficients.

To illustrate the quantitative relationships defined in Equa-
tions 2.7 and 2.8, we consider a linear pathway consisting of 10
reactions; randomly sample 20,000 combinations of the param-
eters S, S,uw 1k;}, and {K}; and compute the corresponding flux
control coefficients. We select the size 10 because it approxi-
mates the typical length of linear metabolic pathways. All
parameters and substrate concentrations are sampled from a
log-normal distribution.

loglo(ki: Kil Sinl Sou'c) -~ N(L 1)1 I = 11 2r Ry 10 (Eq- 2-9)

We first correlate the flux control coefficient with reaction
free energy change for each individual reaction (Fig. 2B). We
find that the relationship between reaction free energy changes
and flux control coefficients calls into question the longstand-
ing hypothesis that reactions with the most negative free energy
changes, such as the reactions catalyzed by hexokinase, phos-
phofructokinase, and pyruvate kinase in glycolysis, serve as
rate-limiting steps of a pathway (35-38). Although previous
work in metabolic control analysis has provided the theoretical
framework to study the role of thermodynamics in the regula-
tion of metabolic fluxes (34), this hypothesis is still widely

19728 J Biol. Chem. (2018) 293(51) 19725-19739

accepted (39-41). However, according to our analysis, for all
reactions except the first reaction, their flux control coefficients
correlate poorly with the reaction free energy changes, suggest-
ing that a large absolute value of free energy change is dispens-
able for a rate-limiting step, and regulation of metabolic fluxes
by an individual reaction is determined by both thermodynam-
ics property and position along the pathway.

We next investigate how the flux control coefficients are
associated with global thermodynamic properties of the entire
pathway. We quantify the deviation from the thermodynamic
equilibrium by the reaction free energy change that is closest to
zero (i.e. the maximal value of free energy change among all
reactions). When this quantity equals zero, the pathway has
zero net flux (i.e. thermodynamic equilibrium). Moreover,
when this quantity is close to zero, at least part of the pathway is
not efficiently driven by thermodynamics, resulting in ineffi-
cient usage of enzymes with free energy changes close to zero
(34). Thus, it is termed the thermodynamic driving force (TDF).

TDF = max{g;} (Eq.2.10)

We correlate the thermodynamic driving force with flux con-
trol coefficient of each reaction step (Fig. 2C). From these sim-
ulations, a pattern emerges, in which the thermodynamic driv-
ing force determines either the upper bound or lower bound of
the flux control coefficients; for the flux control coefficient of
the first reaction (C/,), its lower bound depends on the thermo-
dynamic driving force, whereas for the rest of the reactions, the
upper bounds of their flux control coefficients depend on the
thermodynamic driving force.

Analytical relationships that constrain flux control coeffi-
cients by thermodynamic driving force can also be derived from
Equations 2.7 and 2.10 (see supporting information).

C,>1—¢e™ (Eq.2.11)

oli — DTOF

C{,l < w (Eq.2.12)

From Equations 2.11 and 2.12, we can derive corollary rela-
tionships for the flux control coefficients when the system is
very far from equilibrium (i.e. thermodynamic driving force
approaches minus infinity).

) ;1L i=1
lim C;) =
TDF >0 i 0,

(Eq. 2.13)
i>1

Equation 2.13 suggests that in a linear pathway far from ther-
modynamic equilibrium, the metabolic flux through the path-
way is fully controlled by the enzyme catalyzing the first step. In
other situations when the thermodynamic driving force has a
smaller absolute value, the flux control is more evenly distrib-
uted among all enzymes in the pathway.

An intuitive interpretation of the relationship between the
thermodynamic driving force and flux control coefficients
can be given based on the fact that for a reaction with first-
order kinetics, the elasticity coefficients toward the sub-
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strate and product can be completely determined if the free
energy of this reaction is known (Fig. 2 (D and E) and Equa-
tion 2.6). According to the connectivity theorem (Equation
2.5), in a linear pathway, the ratio of the ith flux control
coefficient to the i + 1th flux control coefficient can be writ-
ten as a function of the free energies of the ith and i + 1¢h
reactions (Fig. 2F).

CJ 6;:+1 1 — eg,v
= — = Q% (Eq.2.14)
G, e e’(1—eM) q

Thus, the thermodynamic driving force constrains the distri-
bution of flux control among enzymes by constraining the elas-
ticity coefficients that determine flux control coefficients
through the connectivity theorem. When the thermodynamic
driving force has a large absolute value (i.e. TDF approaches
minus infinity; bottom left corner in Fig. 2F), for any reaction in
the pathway, its elasticity coefficient with respect to the product
is very close to zero, which means that altering the concentra-
tion of the product has negligible influence on the rate of this
reaction. In this situation, perturbation of any downstream
enzyme has a minimal effect on the first reaction, whose rate is
equal to the overall flux, because the effect must be propagated
through the metabolite S;, which serves as the product of the
first reaction. On the other hand, when the thermodynamic
driving force is close to zero (top right corner in Fig. 2F), the
ratio between two sequential flux control coefficients is more
flexible, resulting in what we term as a more adaptable pattern
of flux control in these pathways.

To summarize, for a linear metabolic pathway with first-or-
der kinetics, we have derived analytical relationships between
the flux control coefficients and thermodynamic properties of
both individual reactions and the entire pathway. We have
shown that the flux control coefficients correlate poorly with
free energy changes of the corresponding reactions but that the
thermodynamic driving force of the whole pathway places
bounds on how much any enzyme can control pathway flux.
However, when the pathway is very far away from thermody-
namic equilibrium, the metabolic flux through this pathway is
completely controlled by the first reaction. We next investigate
whether these principles are conserved in metabolic networks
with more complex topologies.

Branch point with two upstream fluxes

We next consider a metabolic network with two converging
fluxes, J; and J,, at a branch point (Fig. 34). Through the two
fluxes, the metabolite at the branch point, Sgp, is produced by
two input substrates, S;,, ; and S, ,. The final product S, is
produced from Sg, with the flux /; + J, at the steady state. The
three reactions included in this network have rate constants {k,,
ks, ks and equilibrium constants {K;, K,, K3}. At the steady
state, the fluxes /; and J, and the concentration of Sy, can be
solved from the rate constants, equilibrium constants, and con-
centrations of the input substrates and end product based on
the kinetic rules.

SASBMB
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T =k(S, —m

ml
1

I, =ky(S, , S

m2

(Eq. 3.1)

S
I+, =k (S, — o
1 2 3 BP K3

From Equation 3.1, we can solve the steady-state concentra-
tion of the branch point metabolite, Sgp,

k,
kSml +k Sm2 +_Sout
3
Sep = (Eq. 3.2)
kK,
L+ 24k
K, K,
and the steady-state fluxes,
J=kls _KZ(k1K3Sml+k KSy0 +k5S0)
R (k K, + Kk, + K K,k)K, (Eq. 3.3)

in,1 in2

(KK, + Kk, + K K, k;)K,

J k[mz

We can then determine the flux control coefficients from the
summation and the connectivity theorems. Here, we have three
fluxes and three reactions in the network, giving nine flux con-
trol coefficients.

K, (kK,S,  +k,K,S, , +k, S(,m)]

OlogJ, OlogJ, OlogJ,
Ologk, Ologk, Ologk,
Cl- OlogJ, OlogJ, OlogJ, (Eq. 3.4)
Ologk, Ologk, Ologk,
Olog(J, +J,) Olog(J,+J,) 0dlog(J,+J,)
Ologk, Ologk, Ologk,

These flux control coefficients can be determined based on
the summation theorem and connectivity theorem,

Summation theorem

Lo o Lo o
Jl J]
clo L o |k=jo L o |k (Eq.3.5)
' ']2 JZ
0 ! 0 0 —
J+J, J +J,

in which columns of K are the linear basis of feasible steady-
state flux configurations in the network (i.e. all feasible steady-
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Figure 3. Thermodynamics and flux regulation in a pathway with a branch point and two upstream fluxes. A, diagram of the pathway and related
parameters. S, ; and S, , are the two input substrates, S, is the final product, Sg; is the intermediary metabolite at branch point, k; is the rate constant of the
ith reaction, K; is the equilibrium constant of the ith reaction, J, and J, are two upstream fluxes, and J; = J; + J, is the downstream flux. B, distributions of
the flux control coefficients for the network in A with randomly sampled parameters. FCC(i,j) = C’: is the flux control coefficient of the ith flux with respect to
the jth reaction. Limits of the boxes are the 25th and 75th percentiles, central lines are median va]/ues, and whiskers indicate minimal and maximal values. C,
scatter plots comparing flux control coefficients and reaction free energy changes in the network in A with randomly sampled parameters. C, is the ith flux
control coefficient, and g; = AG/RT quantifies the ith free energy change. D, scatter plots comparing flux control coefficients and the thermodynamic driving
force (max{g}) in the network in A with randomly sampled parameters. Variables are the same as in C.

state flux configurations can be written in the form of linear
combination of columns of K).

(Eq. 3.6)

~

Il
—_— O
—_ = O

Itis worth noting that Equation 3.5 is not sufficient for deter-
mining all values of the flux control coefficients because it pro-
vides six linear equations for nine unknowns. To uniquely cal-
culate every element of C’, three additional equations from the
connectivity theorem are needed.

Connectivity theorem

Ce=0 (Eq.3.7)

19730 J. Biol. Chem. (2018) 293(51) 19725-19739

In Equation 3.7, € represents the matrix consisting of the
normalized elasticity coefficients.

Spr W Spr 1
v aS[gp SBI’_KlSin,l l—e™®
- Spp OV _ Sup _ 1
v, 0y | | Spp—KS,, | |1-¢® | (EG-3:8)
M% K3Sm’ !
v, 88, ) | K\S,—S, 1-e®

Thus, by combining Equations 3.1-3.8, the flux control coef-
ficients can be uniquely solved.
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e K (k; + K3k
i kK, + K, (k, + K k;)
- kK (K (ky + Kok )KS,0 = Ky (kKS,0 +kiS)
2 (K, + K, (ky + Kok YK (K,S,,, = K0S, 0) + Kk (S, — KoKSS,, )
o kKK (K (ky + Kok )KS 0~ Ky (G KS,0 +5:S,0))
ul (kK,+K,(k,+ sz}))(k,Kz(K,K‘Sm_l —S)F K,l\rz(KszS‘m_2 =850
o - K, (~k K K,S,, + kK, K,S, , + KKk K.S, , ~KkS,.,)
= (K, + K, (ky + Kok ))K, (Ky + Ko )KSS,, = Ko (6KS, , +5:S,,))
o - Ky +K k)
k) kK, +K,(k, + K k) (Eq 3 9)
o = K\k,K, (kK K.S,, +kK,KS, , + K K,kK.S, , - KkS,,) R
(K, + K, (b + Ko ) K (K KSS,, =8, + Kk (KGKS,, 5 = S,,))
o Koy Ky (K K 0 = Sp) + Kiey (KK S0 = S,))
o (kK, + K, (k, + K, k))(K, (k, + K:kx)K,Sm_, - I(Z(I(ZIQSM_z +kS,,))
o Kol (kK (K KS,0 = S,0) + Ky (KoK, = S,0)
(K, + K, (b + K k) KK K.S,, + K KK,S,, o + K KKKS, , ~KkS,,)
o Kk, +kK,
Kk, +kK, + K K,k

Furthermore, the reaction free energy changes can also be
written as functions of the kinetic parameters and substrate
concentrations.

kK, KS,

in,1

+kK,K,S,

in,1

+k,K,KS,

in,2
+ KK, k,K,S,

in,]
+Klk2K3Sm,2 +K]k3S0u/ (Eq 3 »I 0)
+K K, kK,S o

in,2
+ K K, kS,

out

+ KK, k,S,

out

8 _ i K2 k3 S{)u/

KBRS

in,1

kKK,S,

8 _ in,l
K1k2K3Sm,2 + le2K3Sm,2
Kk,S,, +kK,S,

= out out
kK K,KS,,, + K kKK,S,

in2
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We then combine Equations 3.9 and 3.10 to express the flux
control coefficients in terms of the reaction parameters and free
energy terms. To simplify the expressions, we let &, = e¥. Then
we have the following.

! kK, + K, (k, + K, ks)
c” — (h| ’l)hzlez
" hl(hz *1)(k|Kz +K1kz +K|sz3)

CJ,+J2 — (hl _])hzkllezzkz
" (hl(hz ’I)Klkz Jr(/"1 ’I)hzlez)(lez JrKlkz +K1sz3)
ch — hl (hz 71)K1k2

" (h|_l)hz(k1Kz+K1kz+Klek3)
ch = K, (k + K ky)
” kK, + K, (k, + K,ks)

o By (h, — DK KKk, (Eg.3.11)
" (hl(hz ’1)K1kz Jr(hl ’thlez)(lez JrKlkz +K1sz3)
ch - (hl (hz — I)Klkz + (hl — l)hzlez)

" (hl _1)}’7 (lez + Klkz + Klekz)
c — (hl (hz 71)K|kz *(hy ’l)hzlez)
" hl(hz _1)(k1K2 +K1kz +K1K2k3)
it = Kk, + kK,
" Kk, +k K, +K Kk,

To illustrate the relationships between flux control coeffi-
cients and thermodynamic properties of the network, accord-
ing to Equations 3.9-3.11, we simulate the flux control coeffi-
cients and reaction free energy changes based on 20,000
combinations of parameters randomly sampled from a log-nor-
mal distribution as described previously in Equation 2.9. Com-
binations of parameters resulting in negative fluxes are dis-
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carded. The distributions of flux control coefficients (Fig. 3B)
show that C7%, C2, C7%, and C’3 can have absolute values much
larger than 1 under certain parameter combinations, indicating
that the two upstream fluxes can be dramatically altered in
response to perturbation of activities of enzymes in other
branches. Based on the simulation, we also compare flux con-
trol coefficients with the reaction free energy changes (Fig. 3C)
and the thermodynamic driving force (Fig. 3D). Consistent with
the case of the linear pathway, most of the flux control coeffi-
cients correlate poorly with free energy changes of the individ-
ual reactions catalyzed by the corresponding enzyme (Fig. 3C)
but exhibit a dependence on the thermodynamic driving force
(Fig. 3D). Moreover, the quantitative relationships characteriz-
ing how flux control coefficients are constrained by the ther-
modynamic driving force can also be analytically derived (see
the supporting information).

Ch>1-e™

TDF
he_ €
CVZ > 1— ™
TDF
e
Ch<«——
v ] GIOF
TDF
VA
CV1 > l_eTDF
i . (Eq. 3.12)
C:>l-e
2
TDF
e
C" <

TDF
B l-e

Ji+J, TDF
Gl <e

From Equation 3.12, we can derive the limits of all the flux
control coefficients except for C’, */?and C’}, "/ when the ther-
modynamic driving force goes to minus infinity.

lim C =1
TDF ——x 1

: J;
lim C' =
TDF - 2

lim C)
TDF ——x 3
lim C" =

IDF -0 " (Eq. 3.13)

lim C" =1

IDF—>-o 2

lim C”>=0

IDF —>—c0 '3

lim CH*: =0

IDF——0 3

Thus, when the pathway is far from equilibrium, the two
upstream fluxes /; and J, are fully regulated by activities of the
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enzymes that generate them. Moreover, the downstream flux
J1 + ], is also fully controlled by the two upstream enzymes. The
inequalities in Equation 3.12 also indicate that the feasible
regions of the flux control coefficients C/%, C/7, C/%, and CJ;,
become semi-infinite (i.e. only bounded in one direction) when
the thermodynamic driving force approaches zero (i.e. there
exists at least one near-equilibrium reaction in this pathway).

To summarize, in a metabolic pathway with a branch point
involving two converging fluxes, regulation of the fluxes is largely
dependent on how close to thermodynamic equilibrium the path-
way in entirety is. When the pathway is far away from equilibrium,
all three fluxes are completely controlled by the two upstream
enzymes. On the other hand, when there exists at least one near-
equilibrium reaction in the pathway, there is more flexibility in the
regulation of fluxes, and, unlike in the case of linear pathways, the
two upstream fluxes are able to be dramatically altered even by
enzymes that are not directly involved in the reaction.

Branch point with two downstream fluxes

We next consider a pathway with one branch point in which one
upstream flux, /;, diverges to two downstream fluxes, J, and J,;, and
show that the principles of metabolic flux regulation and thermo-
dynamics also hold in this case. This network includes one input
substrate, S, and two final products, S, ; and S, ,, which are all
connected to the branch point metabolite S .. All kinetic rules and
assumptions are as described above. Thus, at the steady state, con-
centration of S, can be solved from the reaction parameters and
concentrations of other metabolites in the network.

kl Sin + ﬁ Snut,l + ﬁ Saut,2
S - K2 K3
BP kl
—+k, +k,
Kl

(Eq. 4.1)

Fluxes and reaction free energy changes at the steady state
can also be calculated from Equation 4.1.

k, k

kISin + ? Sout,l + ?3 Sou[,Z S
J2 — k2 kz 3 _ out,l
Lk, +k, K,
1
(Eq. 4.2)
kISin +£Sout 1 +£Sout 2
2 ] K3 | Suut 2
Jy =k T — Do
—L+k,+k, A
Kl
) — k1K2K3Sin + k2K3Soul,l + K2k3S(m/,2
(k] + KlkZ + K1k3 )K2K3S/n
2 _ (kl +K1k2 +Klk3)K3Suuz,l (Eq 43)
Kl (le2K3Sin + k2K3S()uI,] + K2k3Sr)ul,2)
8 (kl +K1k2 +Klk3)K2Suu/,2
K] (k]K2K3Sin + k2K3Snul,l + K2k3S0u1,2)
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Here, we also have in total nine flux control coefficients that
can be solved based on the summation theorem and connectiv-
ity theorem.

Olog(J, +J,) Olog(J,+J;) 0dlog(J,+J;)

Ologk, Ologk, Ologk,
g _ OlogJ. OlogJ. OlogJ.
C= 1 : “ | (Eq.4.4)
Ologk, Ologk, Ologk,
OlogJ, OlogJ, Olog J,
Ologk, Ologk, Ologk,
1 1 S, 1 L 5
L+, L+J,  Sip-KS, S+d; J+J,
1 K, 1
cl — 0 _Bovpe || L 0 0
' I KZSBP_Saw,I J, (Eq 45)
o L _KSw || o L
‘]3 KSSRI’ - Sum,Z Js

By combining Equations 4.2—4.5, we can also determine the
flux control coefficients as functions of reaction parameters
and free energy changes.

Chh = K (k, + k)
" k+K (k,+k,)
CJZ — K] ((hz _1)k2 + (h3 _1)k3)
T (hy =Dk + K (k,+ k)
C.Jq _ K1 ((hz _l)kz + (}71 _1)k3)
T (b =Dk + K (ky + k)
Ccs = (hz _1)k1k2
" ((hy =Dk, + (hy =Dk, )k, + K (K, + k)
5kt Kk (EqQ. 4.6)
kK k)
N__ (h, DKk,
c =Dk + K, (k, +ky)
Jy+ly (h3 _l)klks
" ((hy =Dk, + (hy =Dk, )k, + K (K, + &)
Jy (h3 _1)K1k3
" (h, =D(k, + K, (k, + k)
Jy k + Kk,
"k + K (ky+ k)

To investigate the relationships between flux control coeffi-
cients and thermodynamic variables, we randomly sample
20,000 combinations of reaction parameters and substrate
concentrations and calculate flux control coefficients and free
energy changes corresponding to the randomly sampled
parameters from Equations 4.3 and 4.6. Distributions of the
sampled flux control coefficients suggest that the two downstream
fluxes are able to be regulated in response to variations in the activ-
ity of enzymes not directly carrying them (i.e. -, C'3, C3,and C?,
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Figure 4. Thermodynamics and flux regulation in a pathway with a branch point and two downstream fluxes. A, diagram of the pathway and related
parameters. S, is the input substrate, S, ; and S, , are the two final products, Sgp is the intermediary metabolite at branch point, k; is the rate constant of the
ith reaction, K;is the equilibrium constant of the ith reaction, J, and J; are two downstream fluxes, and J; = J, + J5is the upstream flux. B, distribution of the flux
control coefficients for the network in A with randomly sampled parameters. FCC(i,j) = Cﬁj is the flux control coefficient of the ith flux with respect to the jth
reaction. Limits of the boxes are the 25th and 75th percentiles, central lines are median values, and whiskers indicate minimal and maximal values. C, scatter plots
comparing flux control coefficients and reaction free energy changes in the network in A with randomly sampled parameters. C,, is the ith flux control
coefficient, and g; = AG/RT quantifies the ith free energy change. D, scatter plots comparing flux control coefficients and the thermodynamic driving force
(max{g;}) in the network in A with randomly sampled parameters. Variables are the same as in C.

can have absolute values larger than 1; Fig. 4B). Again, we observe
a poor correlation between flux control coefficients and free
energy change of the corresponding reaction steps (Fig. 4C).
Among the nine flux control coefficients, only C, " /* exhibits a
clear dependence on the free energy change g;.

Despite the poor correlation between flux control coeffi-
cients and free energy changes of individual reaction steps,
seven of the nine flux control coefficients are strictly con-

SASBMB

strained by the thermodynamic driving force (Fig. 4D). This
corroborates the findings in other types of network topologies
that the regulation of metabolic fluxes is constrained by the
deviation of the whole pathway from thermodynamic equilib-
rium. We also analytically derive the quantitative relationships
between the upper and lower bounds of the flux control coeffi-
cients and the thermodynamic driving force of the pathway (see
the supporting information).
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(Eq. 4.7)
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Ch>-
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According to Equation 4.7, when the network moves away
from the thermodynamic equilibrium, many of the flux control
coefficients converge to fixed values.

lim C>™ =1
TDF—>-0 "

lim C>" =0
IDF —>—0 2

lim C”™ =0
TDF —>—0 3

lim-—C-* =1
TDF —5>— 1
lim C =1
TDF —»>—x !

(Eq. 4.8)

Thus, when the pathway is far away from thermodynamic
equilibrium, the enzyme catalyzing the upstream reaction
exerts complete control of all three fluxes. Larger variability in
all flux control coefficients that result in semi-infinite feasible
regions of the flux control coefficients C’2, C3, C3, and C’3 are
allowed only when there exist near-equilibrium reactions in
this network.

Thus, based on a combination of analysis and simulation, we
have demonstrated that, at branch points, the regulation of
fluxes by enzyme activities is constrained by the thermody-
namic driving force but has little correlation with free energy
changes of the individual enzymes. These findings, together
with similar results in other network structures, suggest that
the influences of thermodynamics on regulation of metabolic
fluxes by enzyme activities primarily occur at the pathway level
rather than at the individual reaction level. These principles are
applicable to simple metabolic network models regardless of
the structure of the metabolic network, but they also rely on the
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assumption that all enzymes follow first-order kinetics. We
next examine whether the conclusions are conserved in meta-
bolic networks with Michaelis—Menten kinetics.

Thermodynamics and flux control in Michaelis-Menten
models

We now consider zero-order kinetic models as an extreme
case of substrate-saturable enzymes and repeat the theoretical
analysis and simulation in these models to characterize the rela-
tionships between thermodynamics and flux control. Briefly,
although the expressions of steady-state concentrations of the
intermediary metabolites and steady-state fluxes are much
more complicated with this assumption, the flux control coef-
ficients can still be written in the form of simple functions of the
reaction parameters and free energy changes. However, the
thermodynamic driving force no longer constrains the flux con-
trol coefficients in this case (Figs. S1 and S2). Most of the flux
control coefficients in all three network structures have the
form of a zero-order homogeneous function of the thermody-
namic terms /1, Consequently, moving all reactions away from
or toward the thermodynamic equilibrium without influencing
the ratios between the %, values does not change the resulting
flux control coefficients.

Because flux control is no longer constrained by the thermo-
dynamic driving force in zero-order kinetic models, we hypoth-
esize that in Michaelis—Menten models, which lie between the
extreme cases of first-order and zero-order kinetic models, the
saturation of enzymes by metabolites determines whether
the flux control coefficients are still constrained by the ther-
modynamic driving force as they are in first-order kinetic
models. In Michaelis—Menten models (28), the rate of a reac-
tion depends on the catalytic constant (i.e. turnover number)
k and the equilibrium constant K of the enzyme, the concen-
trations of its substrate S and product P, and the Michaelis—
Menten constants Kg and K, for the substrate and product,
respectively.

s
v=k 5{(&' 5 (l—i) (Eg. 5.1)
I+ —+— KS
K, K,

We note that for Michaelis—Menten models, the elasticity
coefficients toward the substrate and product concentrations
differ from those in first-order kinetic models only by one term
quantifying saturation of the enzyme by the given metabolite
(i.e. substrate or product).

R S/K

* 1-ef 1+S/K,+P/K, €q. 5.2
1 P/K,

Ep =

l-e* 1+S/K;+P/K,
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Figure 5. Thermodynamics and flux control in Michaelis-Menten models. A, definition of saturation term for a reaction and maximal saturation term for
a metabolic pathway. B, deviation of FCCs and TDF in a Michaelis—Menten model (orange dot) from relationships derived in the first-order kinetic model
(light blue shaded region). C, relationship between maximal saturation term and fraction of Michaelis—Menten models with TDF and FCCs consistent with
the first-order kinetic model. D, relationship between deviation from first-order kinetic model and maximal saturation term in Michaelis—-Menten

models.

For Michaelis—Menten models, because the rate law is more
complicated than that of zero-order or first-order kinetic mod-
els, we use sets of parameters randomly generated, as previously
done for first-order kinetic models to simulate the thermody-
namic variables and flux control coefficients, and then compare
them with those in first-order kinetic models. To quantify the
saturation of enzymes, we introduce the saturation term for a
reaction (Fig. 54). This saturation term considers the total sat-
uration of an enzyme by the substrate and the product.

(Eq. 5.3)

For a pathway, the overall level of enzyme saturation is quan-
tified by the maximal saturation term (Fig. 54).

Kmax = Max{k;} (Eq. 5.4)

To evaluate whether the thermodynamic variables and flux
control coefficients in a Michaelis—Menten model are consis-
tent with the relationships we have derived for first-order
kinetic models, we compute the deviation of the flux con-
trol coefficients in the Michaelis—Menten model from those

SASBMB

allowed in the first-order kinetic model with the same topology
and thermodynamic driving force (Fig. 5B).

We first examine how the maximal saturation term affects
the fraction of Michaelis—Menten models consistent with first-
order kinetic models. In all three pathway structures, we
observe a gradual increase in the fraction of Michaelis—Menten
models consistent with the first-order kinetic models (Fig. 5C)
as the maximal saturation term decreases, suggesting that the
flux control coefficients are largely constrained by the thermo-
dynamic driving force when the enzymes in the pathway are not
highly saturated. We next compare the maximal saturation
term with the deviation from the results in the first-order
kinetic model. We find that the deviation gradually decreases as
the maximal saturation term decreases, corroborating the find-
ings that the relationships between thermodynamics and flux
control are conserved in Michaelis—Menten models if the
enzymes are not highly saturated.

To summarize, here we show that the principles for thermo-
dynamics and flux control in metabolic pathways with first-
order kinetics are still effective in Michaelis—Menten models
if the enzymes are not highly saturated. It is now reasonable
to ask whether the same rules apply to more complicated
metabolic networks in which most enzymes not only follow
the Michaelis—Menten kinetics, but also have their activities
regulated by long-range interactions such as allosteric
feedback.
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Figure 6. Thermodynamics and flux control in a mathematical model of glycolysis. A, diagram of the glycolysis model. B, scatter plots comparing TDF and
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kinetic model.

Thermodynamics and flux control in a mathematical model of
glycolysis

Thus, we considered a model of glycolysis to study the rela-
tionships between thermodynamics and flux control (42). We
have previously constructed a mathematical model of glycolysis
and used this model to study the regulation of the lactate pro-
duction flux (17, 19). The topological structure of this model
can be approximated by a linear pathway consisting of 13
reversible reactions (Fig. 64). Elements and interactions such as
reactions with more than one substrate, allosteric feedbacks,
conserved species (e.g NAD"/NADH, ATP/ADP/AMP), and
irreversible reactions are also included.

We generated 50,000 sets of random parameters to simulate
the glycolysis model and computed the flux control coefficients
and thermodynamic driving force at the steady state for each set
of parameters. We also computed the maximal saturation term
and assessed how the saturation of enzymes influences the rela-
tionships between thermodynamics and flux control. We first
compared the thermodynamic driving force and flux control
coefficients in the glycolysis model with the values allowed in
the model for a linear pathway with the same number of reac-
tions (i.e. 13 reactions) according to Equations 2.11 and 2.12
(Fig. 6B). As expected, we find that for parameter sets yielding a
high (i.e. close to 1; red dots in Fig. 6B) maximal saturation term,
the glycolysis model is inconsistent with the relationships
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derived under the assumption of first-order kinetics. We then
estimated the deviation from first-order kinetic models (Fig.
6C) and computed the fraction of models consistent with first-
order kinetic models (Fig. 6D). Consistent with the Michaelis—
Menten model, we found that as the deviation decreases, the
fraction of consistent models increases, suggesting that the
relationships derived in first-order kinetic models with simple
topological structures are largely conserved in more compli-
cated metabolic networks.

Discussion

In this study, we derive quantitative relationships between
thermodynamics, enzyme activity, and regulation of metabolic
fluxes. For a set of example pathways, we calculate the flux
control coefficients as functions of the enzyme rate constants,
reaction equilibrium constants, and Gibbs free energy. Based
on numerical simulation and exact analytical results, we find
that in all network topologies considered, the flux control
coefficients are bounded by the thermodynamic driving force,
as defined by the deviation of the entire pathway from thermo-
dynamic equilibrium. Moreover, distinct patterns of flux
regulation emerge when the thermodynamic driving force
approaches two extreme values: if the thermodynamic driving
force is very negative (i.e. all reactions are far away from equi-
librium), enzymes catalyzing the upstream reactions (i.e. reac-
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tions directly consume the input substrates) exert full control of
all fluxes; on the other hand, if the thermodynamic driving force
is close to zero (i.e. near-equilibrium reactions exist in the path-
way), there is more flexibility in the pattern of flux control, and
fluxes in network topologies with branch points can be dramat-
ically altered by enzymes not directly carrying the fluxes. These
findings suggest that the coupling between thermodynamics
and regulation of metabolic flux occurs at the systemic level and
challenges the rule of thumb that the reaction with the most
negative free energy change serves as the rate-limiting step.

It is also worth noting that all analysis that we have done to
derive analytical expressions here relies on the assumption of
first-order kinetics. This approximates the more generalized
Michaelis—Menten mechanism when the abundance of sub-
strate is far below the K, of the enzyme. Accordingly, in a study
comparing substrate concentrations and K, values in different
cell types, among all substrate—enzyme interactions investi-
gated, around 70% exhibited higher substrate concentration
than the K, value, thus requiring a Michaelis—Menten or sub-
strate-saturated, zero-order Kkinetics (30). For Michaelis—
Menten kinetics and a glycolysis model, we have shown, that
the generalizations of our findings depend on the levels of sub-
strate saturation. We also note that the tendency of an enzyme
to be operating in the linear region or to be saturated by its
substrate is highly dependent on the substrate used by this
enzyme. For instance, kinases use ATP as the substrate whose
physiological concentration is much higher than the typical K,
value of enzymes and thus are more likely to be substrate-satu-
rated. On the other hand, other enzymes, such as chromatin-
modifying enzymes, use metabolites much less abundant
as substrates (43). Nevertheless, because the relationships
between thermodynamics and flux control are conserved under
circumstances where the enzymes are moderately saturated, we
expect that our findings are applicable to more complicated
biochemical processes with Michaelis—Menten kinetics.

Finally, although the network structures that we study here
are much simpler than real metabolic networks, the conclu-
sions that we derive here can still be extended to more compli-
cated network topologies. A metabolic network without cycles
can always be simplified to a set of branch points connected by
linear reaction chains with varying lengths, and the enzymes in
the same linear reaction chain can be treated as an entirety to
calculate the flux control coefficients with respect to simulta-
neous change in these enzymes (44). In this case, each linear
reaction chain is simplified to a single reaction step, which
enables us to apply the principles we found in the simple net-
work structures with a branch point.

To summarize, we characterize the quantitative relationship
between thermodynamics and regulation of metabolic fluxes by
enzymes in a metabolic network in this study. We find that the
global thermodynamic property of the network (i.e. thermody-
namic driving force) constrains almost all flux control coeffi-
cients in both linear and branched pathways. Specifically, fluxes
in metabolic networks far away from thermodynamic equilib-
rium are almost fully controlled by enzymes catalyzing the
upstream reactions (i.e. reactions directly consuming the input
substrates). On the other hand, near-equilibrium metabolic
networks allow more flexibility in the pattern of regulation.
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Semi-infinite feasible regions of flux control coefficients are
only allowed in branched pathways with near-equilibrium reac-
tions. These findings highlight the importance of global ther-
modynamic features in constraining the pattern of regulation of
metabolism.

Experimental procedures

Analytical expressions of flux control coefficients were cal-
culated using the function LinearSolve[] in Wolfram Math-
ematica version 11. For the computer simulations, 20,000 com-
binations of random parameters were generated using the
function normrnd() in MATLAB R2016b for each model. Flux
control coefficients and reaction free energies were then com-
puted using the parameter sets that generate positive flux con-
figurations. For the glycolysis model, a model file in SBML for-
mat was downloaded from the BioModels Database (https://
www.ebi.ac.uk/biomodels-main/)* (45) and translated to C+ +
codes using the SBML translator module in the Systems Biology
Workbench (http://sbw.sourceforge.net/)* (46). Simulation
of the model was done with the ODE solver gsl_odeiv2_
step_msbdf in the GNU Scientific Library (https://www.
gnu.org/software/gsl/).* 50,000 random sets of parameters
were generated by sampling V, .. values of the enzymes with
Latin hypercube sampling. The flux control coefficient of the
glycolytic flux (defined as the rate of glucose consumption) with
respect to a reaction step was estimated using the finite differ-
ence approximation,

Vmax,i
|Og ngycolysis(-I .01 Vmax, i) - |Og ngycolysis<-|01>
2log 1.01

J
c, =

(Eq.6.1)

-is the maximal

ax,i

in which Jjco1yis 18 the glycolytic fluxand V,,,
velocity of the ith reaction. Free energy changes for the reac-
tions were calculated from standard reaction free energies and
steady-state concentrations of the metabolites. All source codes
are available at the GitHub page of the Locasale laboratory
(https://github.com/LocasaleLab/MCA_thermodynamics).*
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